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Abstract  

Gallium-based liquid metals are attractive due to their unique combination of metallic and fluidic 

properties. Liquid metal nanoparticles (LM NPs), produced readily using sonication, find use in soft 

electronics, drug delivery, and other applications. However, LM NPs in aqueous solutions tend to 

oxidize and precipitate over time, which hinders their utility in systems that require long-term stability. 

Here we introduce a facile way to rapidly produce aqueous suspension of stable LM NPs within five 

minutes. We accomplish this by dissolving poly(1-octadecene-alt-maleic anhydride) (POMA) in 

toluene and mix within deionized water in the presence of liquid metal (LM). Sonicating the mixture 

results in the formation of toluene-POMA emulsions that embed the LM NPs; as the toluene evaporates, 

POMA coats the particles. Due to the POMA hydrophobic coating, the LM NPs remain stable in 

biological buffer for at least 60 days without noticeable oxidation, as confirmed by dynamic light 

scattering and transmission electron microscopy. The stabilization is further achieved by tuning the 

LM composition. This paper elucidates the stabilization mechanisms. The stable LM NPs possess the 

potential to advance the use of LM in biomedical applications.  
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Introduction 

Metals that exist as liquids at room temperature are attractive due to their unique combination of 

metallic and fluidics properties. As fluids, liquid metals are the softest among all conductive materials1. 

Gallium or its alloys are promising liquid metal candidates due to their low toxicity and negligible 

vapor pressure2. Multiple methods3,4 have been developed to pattern gallium-based liquid metal and a 

variety of applications, including, but not limited to, soft electronics5,6, microfluidics7, composites8 

and motors9.  

While most conventional metallic nanoparticles (NPs) are synthesized through a tedious bottom-

up approach (i.e., reducing precursor metal salts), the fluidic nature of liquid metals (LMs) enables 

facile methods to produce LM NPs. Disruptive forces induced by acoustic stimulation10–15, 

microfluidic devices16,17 or shearing18 have been utilized to break the LMs into nanosized particles. 

Spontaneous formation of an oxide skin on the surface of the metal helps to stabilize the resulting LM 

NPs. The oxide skin of gallium-based is composed primarily of gallium oxide19, 20 and the growth of 

the oxide could be controlled either through thiolation21 or thermal oxidation22. While the thiolation 

mitigates (but not eliminates) the growth of the oxide skin, in thermal oxidation, the oxide skin grows 

thicker with increasing temperature, as expected. Interestingly, the texture and roughness of the oxide 

skin can be manipulated through thermal oxidation in a temperature-dependent manner22. LM NPs are 

soft and conductive, and thus suitable for inkjet printing and also soft electronics applications, i.e., soft 

circuit components23–26 or antennas27. The presence of the oxide skin also endows the formation of 

LM/metal oxide framework, which was utilized for photocatalytic applications28,29. More interestingly, 

the morphology of LM NPs is transformable under pH or light stimulus, and several studies have 

demonstrated the possibility to use LM NPs for drug delivery, specifically for tumour treatment30-32. 

A recent review summarizes the state-of-art biomedical applications involving liquid metals, 
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demonstrating the low-toxicity of liquid metals for bio-applications33. In addition, LM NPs also find 

usage in room-temperature sintering34, batteries35 and energy harvesting36.  

Sonication of LM in ethanol produces stable LM NPs. However, sonicating LM in water results 

in unstable suspensions (i.e., the LM NPs eventually settle due to gravity). Surfactants could be utilized 

to slow down the precipitation, yet, in the presence of oxygen and water, LM NPs will transform into 

GaOOH nanorods due to the oxidation of gallium37. Therefore, it is desirable to have a coating that 

can both stabilizes the LM NPs and prevents the oxidation reaction on the LM NPs surface. With the 

presence of a hydrophilic polymer coating, such as polymeric grafts made of brushed polyethylene 

glycol (bPEG)17 , the LM NPs could remain stable in aqueous environments up to a few days. 

Unfortunately, the LM NPs will still precipitate in biological buffers, which hinders their use in 

biomedical applications. Here, we demonstrate that it is possible to synthesize LM NPs in buffer 

solution that remain stable at least 60 days by grafting a hydrophobic polymer layer comprising poly(1-

octadecene-alt-maleic anhydride) (POMA) on the surface of the LM NP. This is enabled by dissolving 

hydrophobic POMA into toluene to form emulsions within aqueous phase that can encapsulate LM 

NPs, and toluene subsequently evaporates upon sonication. It takes only 5 minutes to produce stable 

LM NPs in a one-pot synthesis. We further demonstrate that the stabilization could be achieved by 

tuning the composition of the LM alloy. The stabilization mechanism is studied and elucidated 

systematically in this work.  

 

Experimental  

Chemical preparation: EGaIn liquid metal, toluene, chloroauric acid (HAuCl4), poly(1-octadecene-

alt-maleic anhydride) (POMA, Mn~30-50 kDa), poly(methyl vinyl ether-alt-maleic anhydride) 

(PMVEMA, Mn=216 kDa), and poly(styrene-co-maleic anhydride) (PSMA, Mn=224 kDa), were 
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purchase from Sigma Aldrich, USA. Ga20In80 alloy was prepared by melting and mixing 16 g of indium 

and 4 g of gallium at 100 ºC. We used a probe sonication system (QSONICA, Q700, 40% amplitude) 

to break the alloys into NPs. 

Characterization: Scanning electron microscope (SEM) images were obtained using a JEOL JSM-

7500FA scanning electron microscope. Transmission electron microscope (TEM) images and energy-

dispersive X-ray spectroscopy (EDS) maps were obtained using FEI Titan 80-300 and JEOL JEM-

ARM200f transmission electron microscopes. A zeta-sizer (Zetasizer Nano ZS, Marvern Instrument, 

USA) was used to measure the size distribution and zeta potential of the LM NPs. The concentration 

of the EGaIn nanoparticles was measured by weighing the dried suspensions.  

 

Results and discussion 

Figure 1a shows a schematic of the proposed method leading to the one-step production of stable and 

functionalizable EGaIn NPs with a hydrophobic insulating coating layer in an aqueous solution. In a 

typical experiment, we dissolve 50 mg POMA powder into 1 mL toluene and add 100 µL of the 

POMA-toluene solution into an 8 mL glass vial, which contains 5 mL deionized (DI) water (final 

POMA concentration in water is 1 mg/mL) and a 50 µL of EGaIn. Toluene dissolves POMA, which 

is otherwise insoluble in water. Next, we sonicate the mixture using a probe sonication system at 40% 

amplitude for 300 s. Upon the activation of the probe, EGaIn breaks into NPs. In addition, the 

sonication should form a POMA-toluene emulsion (cf. Fig. 1a). The POMA macromolecules act as 

emulsifiers where the maleic anhydride groups are hydrolysed into carboxylic acid groups that interact 

with EGaIn NPs, while the hydrophobic octadecyl (C18) hydrocarbon chains prevent EGaIn NPs from 

the aggregation and oxidation. Meanwhile, sonication also enables the POMA coated EGaIn NP to 

interact with the toluene via the C18 chains and thereby become encapsulated within the emulsion (cf. 



 
 

6 
 

Fig. 1a). In the end, toluene evaporates upon heating caused by prolonged sonication (cf. Fig. 1a). This 

enables the formation of double POMA-layer grafted EGaIn NPs in water. The interaction between 

POMA and EGaIn likely occurs through hydrogen bonding. Specifically, POMA hydrolysed in 

aqueous solution forms carboxyl groups, which hydrogen bond with the native gallium oxide on the 

surface of EGaIn. We performed time-of-flight secondary ion mass spectrometry (ToF-SIMS) 

experiments on EGaIn-POMA samples and detected signals from GaO─ and COO─. However, ToF-

SIMS spectra (not shown) contain no evidence for the formation of complexes between carboxyl 

groups in POMA and gallium (or gallium oxide), which indicates that gallium is not likely covalently 

attached to the carboxyl groups.   

Figure 1b shows the size distribution of the POMA-grafted EGaIn NPs measured using a zeta-

sizer, where the peak size is centered at ~170 nm. The NP suspension is very stable; the dark color 

indicates high concentration of the NP (~2 mg/mL), as shown in the inset of Fig. 1b. The concentration 

of the LM NPs could be further increased to 8 mg/mL following another sonication cycle. To the best 

of our knowledge, this is the highest concentration of LM NPs in aqueous system reported to date. Fig. 

1c shows the TEM images of the LM NPs. The zoomed-in image in Fig. 1c shows the thin layer of 

oxide (~2.5 nm) formed on the LM NP surface No diffraction pattern was observed from the 

convergent-beam electron diffraction (CBED) measurement (see Fig. S1 in ESI), indicating that NPs 

remains in a liquid state. We further obtained EDS maps to examine the distribution of gallium, indium, 

and oxygen within the EGaIn NPs, as shown in Fig. 1d. The EDS mapping indicates a uniform 

distribution of gallium and indium within the NPs; the presence of oxygen is attributed to the oxide 

layer and the POMA polymer coating. Since we obtained the TEM image using a copper grid coated 

with an evaporated carbon film, the POMA polymer coating cannot be distinguished from the carbon 

film background due to the lack of contrast. Therefore, we obtained additional TEM images using a 

grid coated with a lacey carbon film to avoid background (cf. Fig. S2a), from which we discovered 

that the thickness of the POMA coating is ~6 to 7 nm. We also prepared LM NPs grafted with small 
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molecules of trisodium citrate by sonicating 50 µL of EGaIn within 5 mL trisodium citrate (1 mM) 

solution for 5 min, and we found that the hydrodynamic size distribution of the NPs becomes narrower 

and smaller; the peak size is found at ~150 nm (cf. Fig. S2b). This result is in line with the TEM 

measurements where the increase of the particle size is due to the POMA polymer coating. 

We also measured the zeta potentials for the NPs with or without the POMA grafted layer. The 

zeta potential of EGaIn NPs without POMA grafting is low (–6.1 ± 5.1 mV) in water and the NPs 

aggregate rapidly after sonication. On the contrary, we obtained a large negative zeta potential for 

POMA grafted EGaIn NPs (−47.9 ± 9.2 mV), confirming hydrolysis and charging of COO─ originating 

from maleic anhydride units on the grafted POMA coatings. This indicates that the stabilization of LM 

NPs can be attributed (at least in part) to electrostatic repulsion among COO─. we note that steric 

effects due to the C18 units might also play a role in stabilization. To better understand the production 

mechanism depicted in Fig. 1a, we further conducted a series of proof-of-concept experiments to 

validate our proposed scheme, as discussed in the following sections. 
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Figure 1. Production of POMA grafted EGaIn NPs. (a) Schematic depicting the mechanism leading 

to the production of stable liquid metal NPs. (b) Hydrodynamic size distribution of the POMA grafted 

EGaIn NPs; the inset shows the NP colloidal suspension. (c) TEM images of the produced NPs. (d) 

EDS mapping of gallium, indium, and oxygen for the NPs. 

 

Figure 2a presents sequential snapshots taken during the production of EGaIn NPs. We observed the 

formation of a white-colored suspension after activating the probe for 10 s. We attribute this suspension 

to the formation of POMA-toluene emulsions (cf. the emulsion also forms without LM in Fig. 2b). The 
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temperature of the suspension increases to ~95 ºC after sonicating for 300 s, as measured by a 

thermocouple. The color of the suspension changes gradually to dark grey after activating the probe 

for 300 s, indicating the evaporation of toluene and the formation of POMA-grafted LM NPs. A series 

of control experiments shows that no stable LM NP suspensions are obtained for the cases of 1) 

sonicating EGaIn in water; 2) sonicating EGaIn in water and POMA powder; and 3) sonicating EGaIn 

in water and toluene (see Fig. S3 in ESI for details). This indicates that the presence of POMA-toluene 

emulsions is crucial for producing stable POMA-grafted LM NPs. The formation of POMA-toluene 

emulations is evidenced by sonicating water-POMA-toluene mixture without the presence of EGaIn, 

as shown in Fig. 2b. We can clearly see the white-color suspension after activating the sonication probe 

for 120 s; the liquid gradually becomes clearer after prolonging the sonicating time to 300 s, indicating 

gradual evaporation of toluene induced by the heat. Similarly, Fig. 2c shows the centrifuged (at 9600 

g for 5 min) NP suspensions with sonication time of 120s and 300s respectively, in which the 

supernatant is opaque with a thick layer of toluene-EGaIn mix at 120 s, while the supernatant is 

transparent at 300 s.  

We further conducted a series of experiments to demonstrate the importance of forming POMA-

toluene emulsions at the beginning of the production process for achieving stable POMA grafted 

EGaIn NPs. Fig. 2d shows the supernatant of the LM NP suspensions obtained by pre-sonicating the 

water-POMA-toluene mixture for 0, 10, 60, 120, and 300 s before adding EGaIn for additional 300 s 

sonication. The concentration of the LM NP reduces significantly by prolonging the pre-sonication 

time. This may be attributed to the fact that the evaporation of toluene prevents the POMA-toluene 

emulsions to interact with and encapsulate POMA-coated EGaIn NPs (cf. Fig. 1a), and consequently, 

no stable double-layer POMA grafted LM NPs can be produced.  

We also performed galvanic replacement for the surface of EGaIn NPs with gold (Au) to prove 

the existence of the hydrophobic layer formed between the two layers of POMA grafting molecules 
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on a LM NP. In doing so, we added 10 µL HAuCl4 solution (concentration of 10 mM) into 1 mL of 

the obtained EGaIn NP suspension and gently mixed it for 5 min. The straightforward reaction reduces 

Au+ ions to metallic Au-NPs on the surface of EGaIn (the other half reaction involves Ga oxidation). 

We compared the corresponding TEM images and EDS mappings obtained for the galvanic 

replacement experiments conducted using POMA grafted NPs with 120 s (Fig. 2e) and 300 s (Fig. 2f) 

sonication time, as well as bPEG (Mn~20 kDa, see details in previous work17 and Fig. S4 in ESI) 

grafted EGaIn NPs (Fig. 2g). The surfaces of the POMA-grafted NPs contain fewer AuNPs, and the 

size of the formed AuNPs is relatively large in comparison to the case of bPEG-grafted NPs. We have 

previously shown that the surface of bPEG-grafted EGaIn NPs can be uniformly coated with silver 

NPs after galvanic replacement due to the uniform reaction occurred on the surface of EGaIn17. 

However, for the case of POMA grafted NPs, the existence of a hydrophobic layer can prevent the 

reaction. We reason that the larger size of the AuNPs observed is due to the continuous growth of a 

particle from a localized point on the surface of EGaIn with defects in POMA coating. Furthermore, 

there is likely additional unevaporated toluene present in the hydrophobic layer for the NPs obtained 

with 120 s sonicating time, and this layer further prevents the galvanic replacement reaction, therefore, 

reducing the number of Au-NPs formed on the surface (see Fig. 2e and Fig. 2f). 

Such a hydrophobic insulating layer prevents the hydrolysis and oxidation of the EGaIn NPs. 

This is evidenced by control experiments conducted using PMVEMA and PSMA, as the grafting 

macromolecules. We observed the formation of a relatively thick (10-20 nm) gallium oxide shell on 

the NPs and gallium oxide nanodisks only 5 days after production particle, as shown in Fig. 2h (see 

also Fig. S5 in ESI), while no change for the POMA grafted NPs was observed in water even 60 days 

after production, as shown in Fig. 2i. The hydrophobic insulating layer can also prevent dissolution of 

the NPs from etchant, such as strong acid, as shown in Fig. S6. The developed simple and 

straightforward NP grafting method by sonicating NPs and POMA-toluene solution can also be applied 
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to other materials such as iron oxide, tungsten trioxide, titanium dioxide NPs, as given in Fig. S7 in 

ESI. 

 

Figure 2. Investigating the mechanism behind the production of POMA grafted EGaIn NPs. (a) 

Sequential snap shots showing the NP suspension during the production process. (b) Water-POMA-

toluene mix 120 and 300 s after activating the sonication probe. (c) Centrifuged LM NP suspension 

120 and 300 s after activating the sonication probe. (d) Image of the supernatants for LM NPs produced 

with different pre-sonicating time; the control sample lacks EGaIn during sonication. TEM image and 

EDS mapping of the POMA grafted EGaIn NPs produced with (e) 120, and (f) 300 s sonicating time 

after galvanic replacement reaction. (g) TEM image and EDS mapping of the bPEG-grafted EGaIn 

NPs after galvanic replacement reaction. (h) TEM images for PMVEMA and PSMA grafted LM NPs 

5 days after production. (I) TEM images for POMA grafted LM NPs 5 and 60 days after production. 
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We demonstrated that the POMA-grafted coatings are able to stabilize the EGaIn NPs in water. We 

further investigated the long-term stability of such POMA grafted EGaIn NPs within biological buffers 

containing competitive ions such as phosphate-buffered saline (PBS). We added 100 µL of ten times 

concentrated (10×) PBS buffer into 900 µL of the produced EGaIn NP suspension, and Fig. 3a displays 

the measured size distribution for the NPs over a period of 60 days. The NP suspension is very stable 

(see Fig. 3a right-corner inset) with only a minor shift of the size distribution towards larger sizes after 

60 days. We further examined the EGaIn NPs using TEM, as shown in the inset of Fig. 3a, where we 

did not observe the formation of gallium oxide nanodisks. The minor shift of the size distribution is 

likely due to the gradual growth of gallium oxide on the surface of EGaIn in PBS, indicating that 

oxygen molecules are still able to penetrate the hydrophobic insulating layer. This result is interesting 

as we initially expected that the ions within PBS could compromise the electrostatic repulsion force 

between NPs and induce aggregation.  

To better understand the mechanism behind the stabilization, we suspended the LM NPs within 

0.01 M sodium phosphate buffers with the pH of 2, 7 and 12 to suppress or facilitate the hydrolysis of 

the grafted POMA. Fig. 3b shows the size distributions of the NPs 2 days after suspending. The LM 

NPs are very stable within the buffers with no aggregation observed. We observed that the zeta 

potential of the NPs reduced significantly to −19.7 ± 12.9 mV within the pH 2 buffer, as shown in Fig. 

3c. This can be attributed to the suppression of hydrolysis for the grafted POMA at such a low pH, and 

the absence of NP aggregation indicates that the grafted POMA molecules can provide a barrier to 

sterically stabilize the NPs. The zeta potential increased to −44.3 ± 10.7 mV within the pH 7 buffer, 

indicating that the hydrolysis of the grafted POMA is facilitated at a neutral pH (Fig. 3c), and the LM 

NPs can be stabilized by the combination of electrostatic repulsion and steric barrier, i.e. 

electrosterically38. The decreased zeta potential within a pH 12 buffer is likely due to the increased ion 

concentration after adding sodium hydroxide (NaOH) when adjusting the pH. These experiments 

explain the reason behind the outstanding stability of the NPs within PBS; our measurement shows 
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that the zeta potential of the NPs is −28.9 ± 3.4 mV within 1× PBS (Fig. 3c) and therefore, the existence 

of the steric barrier formed by POMA facilitates the stabilization. The zeta potential of the NPs further 

decreased to −23.9 ± 2.2 mV and −16.6 ± 1.3 mV after we double and triple the concentration of PBS, 

respectively. Such a high ion concentration eventually induces the precipitation of the NPs, as shown 

in Fig. S8 in ESI.  

Since the POMA grafted LM NPs are stable within biological buffer, we further examined their 

cytotoxicity on Chinese hamster ovary (CHO) cell line using the Alamar Blue assay (see Fig. S9 for 

details). Fig. S9 shows the viability of the CHO cells upon the 24 h exposure to the NPs with different 

concentrations; we observed that the NPs has no or little effect on the viability of CHO cells for particle 

concentration less than 62.5 µg/mL. 
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Figure 3. Investigating the stability of POMA grafted liquid metal NPs within PBS buffer. (a) 

Hydrodynamic size distribution of the POMA grafted EGaIn NPs within 1× PBS buffer over a period 

of 60 days; the insets shows the NP suspension and TEM image taken 60 days after production. (b) 

Hydrodynamic size distribution of the LM NPs within water and 0.01 M sodium phosphate buffers 

with the pH of 2, 7 and 12. (c) Zeta potential of the POMA-grafted NPs suspended within water, 

sodium phosphate buffers, and 1× PBS.   
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To minimize the growth of the oxide layer on the EGaIn NP surfaces and to maximize their long-term 

stability, we utilized an alloy which contains 80% (by weight) of indium and 20 % of gallium (Ga20In80) 

for producing the POMA-grafted LM NPs. We hypothesize that increasing the content of indium can 

minimize the hydrolysis and oxidation of Ga in the NPs. On a related note, it is reported that a much 

higher concentration of gallium ions is detected than that of indium ions when submerging EGaIn in 

aqueous solution, indicating the instability of gallium in aqueous system compared to indium39. 

Therefore, it is possible to enhance the stability of gallium-based alloys in aqueous system through 

decreasing the content of gallium. We also conducted proof-of-concept experiments to compare the 

chemical stability of EGaIn and Ga20In80 NPs by sonicating them within DI water for 10 min. Our 

previously reported results show that EGaIn NPs can be hydrolysed and oxidized to gallium oxide 

nanodisks 10 min after sonication due to heating37. Fig. 4a and Fig. 4b display EDS spectra and SEM 

images obtained for the EGaIn and Ga20In80 NPs 10 min after sonication, respectively. The Ga20In80 

alloy is solid at room temperature but can become liquid after heating induced during sonication. 

Therefore, the bulk material can be broken into LM NPs. We can clearly see that dealloying process 

occurred for EGaIn NPs and most of the NPs were oxidized to gallium oxide nanodisks (Fig. 4a), while 

the Ga20In80 NPs have remained spherical and stable without changes in shape (Fig. 4b). Interestingly, 

we did not observe diffraction patterns from the convergent-beam electron diffraction (CBED) 

measurement of the Ga20In80 NPs, indicating that the NPs of Ga20In80 alloy are in liquid state. This 

might be attributed to the supercooling effect of liquid metals40. Despite the high content of indium 

within the NPs, the EDS mappings given in Fig. 4c clearly show the formation of a gallium, instead of 

indium, oxide layer on the surface of the NPs. During these experiments, we discovered that increasing 

the indium content can minimize the hydrolysis and oxidation of the NPs within PBS, as evidenced by 

the measurement of size distribution reported in Fig. 4d, where no shift of the peak was observed 

within 60 days. We did not observe any changes of the NPs from the TEM images taken 60 days after 

particle production (Fig. 4d inset). These results demonstrate that this method of producing stable 
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liquid metal NPs grafted by POMA represents a significant advance in comparison to previously 

reported work.  

 

Figure 4. Investigating the enhanced stability of Ga20In80 liquid metal NPs. EDS spectrum and 

SEM image for (a) EGaIn, and (b) Ga20In80 NPs obtained after 10 min sonication in DI water. (c) EDS 

mapping of gallium, indium, and oxygen for the Ga20In80 NPs. (d) hydrodynamic size distribution of 

the POMA grafted Ga20In80 NPs within 1× PBS buffer over a period of 60 days; the insets shows the 

NP suspension and TEM image taken 60 days after production. 
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Conclusions 

In summary, we report on a simple and rapid method for producing stable LM NPs grafted with double-

layered POMA molecules using sonication. It only takes 5 minutes to produce such NPs. The POMA 

coating not only offers a hydrophobic insulation layer and steric barrier, but also forms a surface with 

strong negative surface charge that stabilizes the LM NPs. The produced LM NPs are stable in ionic 

biological buffers, such as PBS, for at least 60 days without aggregation induced by hydrolysis and 

oxidation. Reducing the gallium content in the alloy further enhances the NP stability. The simplicity 

and versatility of the production method, along with the excellent stability of the produced LM NPs, 

has the potential for achieving the further development of LM NP-based biomedical applications.  
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