51 research outputs found

    Residual characteristics of HCHs and DDTs in soil and dust of some parks in Ulaanbaatar, Mongolia

    Get PDF
    The residual characteristics of HCHs and DDTs in park soils and dusts in Ulaanbaatar, Mongolia were determined by GC-ECD to evaluate their potential pollution risk. The residual concentrations of total HCHs and DDTs in the park soil samples were ranged in 11.36-53.14 ng·g-1 and 11.96-24.70 ng·g-1 while it was ranged in 32.28-92.68 ng·g-1 and 13.45-24.41 ng·g-1 in the park dust samples, respectively. We have studied the ratio of α-HCH/γ-HCH in order to determine pollution sources which may come from either technical HCHs or lindane. The study revealed that concentration of DDTs in soil has direct correlation on usage rate of the dicofol and technical DDT in the sampling area. The soil pollution assessments based on the single pollution index of HCHs and DDTs indicated that Ulaanbaatar city’s park soil and dust were not polluted with these compounds.The single pollution index of HCHs reached to 1.85 in A park dust samples,indicating the park dust environment was potentially polluted. DOI: http://doi.dx.org/10.5564/mjc.v15i0.315 Mongolian Journal of Chemistry 15 (41), 2014, p15-2

    Critical Role of TCF-1 in Repression of the IL-17 Gene

    Get PDF
    Overwhelming activation of IL-17, a gene involved in inflammation, leads to exaggerated Th17 responses associated with numerous autoimmune conditions, such as experimental autoimmune encephalomyelitis (EAE). Here we show that TCF-1 is a critical factor to repress IL-17 gene locus by chromatin modifications during T cell development. Deletion of TCF-1 resulted in increased IL-17 gene expression both in thymus and peripheral T cells, which led to enhanced Th17 differentiation. As a result, TCF-1-/- mice were susceptible to Th17-dependent EAE induction. Rag1-/- mice reconstituted with TCF-1-/- T cells were also susceptible to EAE, indicating TCF-1 is intrinsically required to repress IL-17. However, expression of wild-type TCF-1 or dominant negative TCF-1 did not interfere with Th17 differentiation in mature T cells. Furthermore, expression of TCF-1 in TCF-1-/- T cells could not restore Th17 differentiation to wild-type levels, indicating that TCF-1 cannot affect IL-17 production at the mature T cell stage. This is also supported by the normal up-regulation or activation in mature TCF-1-/- T cells of factors known to regulate Th17 differentiation, including RORγt and Stat3. We observed hyperacetylation together with trimethylation of Lys-4 at the IL-17 locus in TCF-1-/- thymocytes, two epigenetic modifications indicating an open active state of the gene. Such epigenetic modifications were preserved even when TCF-1-/- T cells migrated out of thymus. Therefore, TCF-1 mediates an active process to repress IL-17 gene expression via epigenetic modifications during T cell development. This TCF-1-mediated repression of IL-17 is critical for peripheral T cells to generate balanced immune responses

    Potential toxicity of quercetin: The repression of mitochondrial copy number via decreased POLG expression and excessive TFAM expression in irradiated murine bone marrow

    Get PDF
    The cytotoxicity of quercetin is not well understood. Using an ICR murine model, we unexpectedly found that mice exposed to 7 Gy total body irradiation (TBI) exhibited general in vivo toxicity after receiving quercetin (100 mg/kg PO), whereas this result was not observed in mice that received TBI only. In order to understand the involvement of alterations in mitochondrial biogenesis, we used a real-time qPCR to analyze the mitochondrial DNA copy number (mtDNAcn) by amplifying the MTRNR1 (12S rRNA) gene in murine bone marrow. We also utilized reverse transcription qPCR to determine the mRNA amounts transcribed from the polymerase gamma (POLG), POLG2, and mammalian mitochondrial transcription factor A (TFAM) genes in the tissue. In the mice exposed to TBI combined with quercetin, we found: (1) the radiation-induced increase of mtDNAcn was inhibited with a concurrent significant decrease in POLG expression; (2) TFAM expression was significantly increased; and (3) the expression of POLG2 was not influenced by the treatments. These data suggest that the overall toxicity was in part associated with the decrease in mtDNAcn, an effect apparently caused by the inhibition of POLG expression and overexpression of TFAM; unaltered POLG2 expression did not seem to contribute to toxicity
    corecore