14 research outputs found

    Personalized First Issue Recommender for Newcomers in Open Source Projects

    Full text link
    Many open source projects provide good first issues (GFIs) to attract and retain newcomers. Although several automated GFI recommenders have been proposed, existing recommenders are limited to recommending generic GFIs without considering differences between individual newcomers. However, we observe mismatches between generic GFIs and the diverse background of newcomers, resulting in failed attempts, discouraged onboarding, and delayed issue resolution. To address this problem, we assume that personalized first issues (PFIs) for newcomers could help reduce the mismatches. To justify the assumption, we empirically analyze 37 newcomers and their first issues resolved across multiple projects. We find that the first issues resolved by the same newcomer share similarities in task type, programming language, and project domain. These findings underscore the need for a PFI recommender to improve over state-of-the-art approaches. For that purpose, we identify features that influence newcomers' personalized selection of first issues by analyzing the relationship between possible features of the newcomers and the characteristics of the newcomers' chosen first issues. We find that the expertise preference, OSS experience, activeness, and sentiment of newcomers drive their personalized choice of the first issues. Based on these findings, we propose a Personalized First Issue Recommender (PFIRec), which employs LamdaMART to rank candidate issues for a given newcomer by leveraging the identified influential features. We evaluate PFIRec using a dataset of 68,858 issues from 100 GitHub projects. The evaluation results show that PFIRec outperforms existing first issue recommenders, potentially doubling the probability that the top recommended issue is suitable for a specific newcomer and reducing one-third of a newcomer's unsuccessful attempts to identify suitable first issues, in the median.Comment: The 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023

    Household wealth proxies for socio-economic inequality policy studies in China

    Get PDF
    In China, one percent of the richest population holds more than one-third of the wealth, while the poorest 25% shares no more than two percent of the total. The country’s rapid economic development has resulted in increasing socio-economic disparities, and a rapidly deteriorating environment. This puts the Chinese citizens, especially the most vulnerable and deprived socio-economic status (SES) groups, at high risks of environmental inequality (EI). In most SES-based EI studies conducted in China, household wealth has often been overlooked, though it potentially serves a good economic indicator to capture the socio-economic effect of environmental change in China. Nevertheless, existing SES databases in China are of low spatial resolution and are insufficient to support fine-grained EI studies at the intra-city level in China. The core research challenge is to develop a representative household wealth proxy in high-spatial resolution for China. This study highlights the research gaps and proposes a new household wealth proxy, which integrates both fine-grained data/features such as daytime satellite imagery and easily accessible wealth indicators such as house prices. We also capitalize on everyday economic activity data retrieved from personal mobile phones and online transaction/social platforms in the composition of our wealth proxy to achieve a higher accuracy in estimating household wealth at fine-grained resolution via machine learning. Finally, we summarize the challenges in improving both the quality and the availability of Chinese socio-economic datasets, while protecting personal privacy and information security during the data collection process for household wealth proxy development in China

    Gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenesis

    Get PDF
    Introduction. Adipogenesis comprises multiple processes by which mesenchymal stem cells differentiate into adipocytes. To increase our knowledge of the mechanism underlying adipogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs), we performed full-genome gene expression microarray and gene ontology analyses of induced differentiation of hMSCs. Material and methods. Adipogenic differentiation of hMSCs was induced by an adipogenic medium, and total RNA was extracted from undifferentiated hMSCs (day 0) and differentiated adipocytes (day 14). Then microarray hybridization of RNA samples was performed. The GeneChip Operating Software was used to analyze the hybridization data to identify differentially expressed genes, which were performed Gene Ontology categorization and pathway analysis. Pathway-act-network and genes-act-network were built according to the Kyoto Encyclopedia of Genes and Genomes database. Some differentially expressed genes were subjected to qRT-PCR to verify the microarray data. Results. We detected a total of 3,821 differentially expressed genes, of which 753 were upregulated and 3,068 downregulated. These genes were well represented in a variety of functional categories, including collagen fibril organization, brown fat cell differentiation, cell division, and S phase of mitotic cell cycle. Subsequently, pathway analysis was conducted, and significant pathways (from top 50) were selected for pathway-act-network analysis, which indicated that the mitogen-activated protein kinase (MAPK) pathway and cell cycle were of high degrees (> 10). Gene-act-network analysis showed that insulin-like growth factor 1 receptor (IGF1R), histone deacetylase 1 (HDAC1), HDAC2, MAPK13, MAPK8, phosphoinositide-3-kinase regulatory subunit 1 (PI3KR1), and PI3KR2 also had high degrees (> 18). Conclusions. Collectively, these data provide novel information and could serve as a basis for future study to clarify the mechanisms underlying adipocyte differentiation of hMSCs

    Advanced Unstructured Data Processing for ESG Reports: A Methodology for Structured Transformation and Enhanced Analysis

    Full text link
    In the evolving field of corporate sustainability, analyzing unstructured Environmental, Social, and Governance (ESG) reports is a complex challenge due to their varied formats and intricate content. This study introduces an innovative methodology utilizing the "Unstructured Core Library", specifically tailored to address these challenges by transforming ESG reports into structured, analyzable formats. Our approach significantly advances the existing research by offering high-precision text cleaning, adept identification and extraction of text from images, and standardization of tables within these reports. Emphasizing its capability to handle diverse data types, including text, images, and tables, the method adeptly manages the nuances of differing page layouts and report styles across industries. This research marks a substantial contribution to the fields of industrial ecology and corporate sustainability assessment, paving the way for the application of advanced NLP technologies and large language models in the analysis of corporate governance and sustainability. Our code is available at https://github.com/linancn/TianGong-AI-Unstructure.git

    Dual Regulation of Host TRAIP Post-translation and Nuclear/Plasma Distribution by Porcine Reproductive and Respiratory Syndrome Virus Non-structural Protein 1α Promotes Viral Proliferation

    Get PDF
    In this study, we show that porcine reproductive and respiratory syndrome virus (PRRSV) non-structural protein 1α (nsp1α) facilitates PRRSV escape from innate immune by modulating nuclear to cytoplasmic translocation and distribution ratio of TRAIP to promote virus proliferation. Mechanistically, TRAIP interacts with PRRSV nsp1α via its K205 site, while NSP1α decreases the SUMOylation and K48 ubiquitination independent of the TRAIP interaction K205 site. Modulation of the dual modification of TRAIP by PRRSV nsp1α results in over-enrichment of TRAIP in the cytoplasm. Enrichment of nsp1α-induced cytoplasmic TRAIP in turn leads to excessive K48 ubiquitination and degradation of serine/threonine-protein kinase (TBK1), thereby antagonizing TBK1-IRF3-IFN signaling. This study proposes a novel mechanism by which PRRSV utilizes host proteins to regulate innate immunity. Findings from this study provides novel perspective to advance our understanding in the pathogenesis of PRRSV

    The development of biodiversity conservation measures in China's hydro projects : A review

    No full text
    The hydropower capacity of China ranks first in the world and accounts for approximately 20% of the total energy production in the country. While hydropower has substantially contributed to meeting China's renewable energy targets and providing clean energy to rural areas, the development of hydropower in China has been met with significant controversy. Ecologically, hydro projects alter the landscape, with potential impacts to the country's aquatic biodiversity. Over the past four decades in China, various mainstream opinions and misunderstandings have been presented concerning how to alleviate the negative impacts of hydro projects on aquatic ecosystems. This article reviews research concerning potential mitigation measures to enhance aquatic biodiversity conservation in hydro projects in China. Based on the academic attention such research has attracted, three technical measures for aquatic biodiversity conservation are considered: (1) fish passages, (2) restocking efforts and (3) river and lake renovations. This article provides a historical comparison of these three practices in China to demonstrate the advantages and disadvantages of each method. The article also reviews the relevant legislation, regulations and technical guidelines concerning China's hydro projects dating back to 1979. The dynamics in research, publications, and patents concerning these three mitigation measures are summarized to demonstrate their technological developments in the context of legislative and policy advances. Data were gathered through the China Knowledge Resource Integrated Database and the State Intellectual Property Office of the People's Republic of China. Based on the analysis provided, the article recommends an expansion of China's environmental certification system for hydro projects, more robust regional legislation to bolster the national framework, the cooperation between upstream and downstream conservation mechanisms, and better monitoring to determine the efficacy of mitigation measures

    Cellulose-Based Ultralong Room-Temperature Phosphorescence Nanomaterials with Tunable Color and High Quantum Yield via Nano-Surface Confining Effect

    No full text
    How to achieve multicolor organic room-temperature phosphorescence (RTP) is still challenging and striking. Herein, we discovered a new principle to construct eco-friendly color-tunable RTP nanomaterials based on the nano-surface confining effect. Cellulose nanocrystal (CNC) immobilized cellulose derivatives (CX) containing aromatic substituents via hydrogen-bonding interactions, which effectively inhibit the motion of cellulose chains and luminescent groups to suppress the nonradiative transitions. Meanwhile, CNC with a strong hydrogen-bonding network can isolate oxygen. CX with different aromatic substituents regulate the phosphorescent emission. After mixing CNC and CX directly, a series of polychromatic ultralong RTP nanomaterials were obtained. The RTP emission of the resultant CX@CNC can be finely adjusted through the introduction of various CX and the regulation of the CX/CNC ratio. Such a universal, facile, and effective strategy can be used to fabricate various colorful RTP materials with wide color gamut. Because of the complete biodegradability of cellulose, the multicolor phosphorescent CX@CNC nanomaterials can be used as eco-friendly security inks to fabricate disposable anticounterfeiting labels and information-storage patterns via conventional printing and writing processes

    PRRSV Non-Structural Proteins Orchestrate Porcine E3 Ubiquitin Ligase RNF122 to Promote PRRSV Proliferation

    No full text
    Ubiquitination plays a major role in immune regulation after viral infection. An alternatively spliced porcine E3 ubiquitin ligase RNF122 promoted PRRSV infection and upregulated in PRRSV-infected PAM cells was identified. We characterized the core promoter of RNF122, located between −550 to −470 bp upstream of the transcription start site (TSS), which displayed significant differential transcriptional activities in regulating the transcription and expression of RNF122. The transcription factor HLTF was inhibited by nsp1α and nsp7 of PRRSV, and the transcription factor E2F complex regulated by nsp9. Together, they modulated the transcription and expression of RNF122. RNF122 could mediate K63-linked ubiquitination to raise stability of PRRSV nsp4 protein and thus promote virus replication. Moreover, RNF122 also performed K27-linked and K48-linked ubiquitination of MDA5 to degrade MDA5 and inhibit IFN production, ultimately promoted virus proliferation. In this study, we illustrate a new immune escape mechanism of PRRSV that enhances self-stability and function of viral nsp4, thus, regulating RNF122 expression to antagonize IFNα/β production. The present study broadens our knowledge of PRRSV-coding protein modulating transcription, expression and modification of host protein to counteract innate immune signaling, and may provide novel insights for the development of antiviral drugs

    Polymer-Coated Graphene Aerogel Beads and Supercapacitor Application

    No full text
    Graphene aerogels are highly porous materials with many energy and environmental applications; tailoring the structure and composition of pore walls within the aerogel is the key to those applications. Here, by freeze casting the graphene oxide sheets, we directly fabricated freestanding porous graphene beads containing radially oriented through channels from the sphere center to its surface. Furthermore, we introduced pseudopolymer to make reinforced, functional composite beads with a unique pore morphology. We showed that polymer layers can be coated smoothly on both sides of the pore walls, as well as on the junctions between adjacent pores, resulting in uniform polymer–graphene–polymer sandwiched structures (skeletons) throughout the bead. These composite beads significantly improved the electrochemical properties, with specific capacitances up to 669 F/g and good cyclic stability. Our results indicate that controlled fabrication of homogeneous hierarchical structures is a potential route toward high performance composite electrodes for various energy applications
    corecore