204 research outputs found

    Secure Decentralized IoT Service Platform using Consortium Blockchain

    Full text link
    Blockchain technology has gained increasing popularity in the research of Internet of Things (IoT) systems in the past decade. As a distributed and immutable ledger secured by strong cryptography algorithms, the blockchain brings a new perspective to secure IoT systems. Many studies have been devoted to integrating blockchain into IoT device management, access control, data integrity, security, and privacy. In comparison, the blockchain-facilitated IoT communication is much less studied. Nonetheless, we see the potential of blockchain in decentralizing and securing IoT communications. This paper proposes an innovative IoT service platform powered by consortium blockchain technology. The presented solution abstracts machine-to-machine (M2M) and human-to-machine (H2M) communications into services provided by IoT devices. Then, it materializes data exchange of the IoT network through smart contracts and blockchain transactions. Additionally, we introduce the auxiliary storage layer to the proposed platform to address various data storage requirements. Our proof-of-concept implementation is tested against various workloads and connection sizes under different block configurations to evaluate the platform's transaction throughput, latency, and hardware utilization. The experiment results demonstrate that our solution can maintain high performance under most testing scenarios and provide valuable insights on optimizing the blockchain configuration to achieve the best performance

    Design of a New CIM-DCSK-Based Ambient Backscatter Communication System

    Full text link
    To improve the data rate in differential chaos shift keying (DCSK) based ambient backscatter communication (AmBC) system, we propose a new AmBC system based on code index modulation (CIM), referred to as CIM-DCSK-AmBC system. In the proposed system, the CIM-DCSK signal transmitted in the direct link is used as the radio frequency source of the backscatter link. The signal format in the backscatter link is designed to increase the data rate as well as eliminate the interference of the direct link signal. As such, the direct link signal and the backscatter link signal can be received and demodulated simultaneously. Moreover, we derive and validate the theoretical bit error rate (BER) expressions of the CIM-DCSK-AmBC system over multipath Rayleigh fading channels. Regarding the short reference DCSK-based AmBC (SR-DCSK-AmBC) system as a benchmark system, numerical results reveal that the CIM-DCSK-AmBC system can achieve better BER performance in the direct link and higher throughput in the backscatter link than the benchmark system

    Macrophages Phenotype Regulated by IL-6 Are Associated with the Prognosis of Platinum-Resistant Serous Ovarian Cancer: Integrated Analysis of Clinical Trial and Omics

    Get PDF
    Background. The treatment of platinum-resistant recurrent ovarian cancer (PROC) is a clinical challenge and a hot topic. Tumor microenvironment (TME) as a key factor promoting ovarian cancer progression. Macrophage is a component of TME, and it has been reported that macrophage phenotype is related to the development of PROC. However, the mechanism underlying macrophage polarization and whether macrophage phenotype can be used as a prognostic indicator of PROC remains unclear. Methods. We used ESTIMATE to calculate the number of immune and stromal components in high-grade serous ovarian cancer (HGSOC) cases from The Cancer Genome Atlas database. The differential expression genes (DEGs) were analyzed via protein–protein interaction network, Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analysis to reveal major pathways of DEGs. CD80 was selected for survival analysis. IL-6 was selected for gene set enrichment analysis (GSEA). A subsequent cohort study was performed to confirm the correlation of IL-6 expression with macrophage phenotype in peripheral blood and to explore the clinical utility of macrophage phenotype for the prognosis of PROC patients. Results. A total of 993 intersecting genes were identified as candidates for further survival analysis. Further analysis revealed that CD80 expression was positively correlated with the survival of HGSOC patients. The results of GO and KEGG analysis suggested that macrophage polarization could be regulated via chemokine pathway and cytokine–cytokine receptor interaction. GSEA showed that the genes were mainly enriched in IL-6-STAT-3. Correlation analysis for the proportion of tumor infiltration macrophages revealed that M2 was correlated with IL-6. The results of a cohort study demonstrated that the regulation of macrophage phenotype by IL-6 is bidirectional. The high M1% was a protective factor for progression-free survival. Conclusion. Thus, the macrophage phenotype is a prognostic indicator in PROC patients, possibly via a hyperactive IL-6-related pathway, providing an additional clue for the therapeutic intervention of PROC

    A united credible capacity evaluation method of distributed generation and energy storage based on active island operation

    Get PDF
    Cooperating with distributed energy storage, distributed generation is with the potential of supply load stably under both normal and failure periods of distribution network. Therefore, distributed generation has not only electricity value, but also capacity value. The capacity value can be characterized by credible capacity index. However, the uncertainty of the distributed generation output and the sequential characteristics of energy-storage operation must be considered during a united credible capacity evaluation. A united credible capacity evaluation method of distributed generation and energy storage based on active island operation is proposed. The proposed method carries out day-ahead economic dispatching under a normal state and island partition under a fault state, alternately, to realize accurate reliability calculation, which is the key link of credible capacity searching. The main work is as follows. First, a day-ahead economic dispatching model under normal state is established to obtain the sequential remaining electricity information of energy storage. Second, the models of maximum island partition and optimal island rectification are established based on electricity sufficiency and power balance information. By solving the maximum island partition and optimal island rectification models alternately, optimal island partition schemes under the fault state could be achieved. Then, the convergence criterion based on variance coefficients instead of artificial selection is designed in reliability calculation. Finally, the united credible capacity of distributed generation and energy storage is evaluated in the PG&E 69-bus system. It is found that credible capacity value increases by 23%, 53%, and 61%, respectively, under the energy storage allocation ratios of 20%, 30%, and 40%. It can be seen that the integration of energy storage makes a significant impact on distributed generation credible capacity value
    • …
    corecore