50 research outputs found

    Graphene quantum dot modified g-C3N4 for enhanced photocatalytic oxidation of ammonia performance

    Get PDF
    In this study, graphene quantum dot (GQD) modified g-C3N4 (GQDs/CN) composite photocatalysts were prepared. The photocatalytic ammonia degradation properties of the GQDs/CN composites were much higher than that of pure g-C3N4. When the amount of GQDs added reached 0.5 wt% the GQDs/CN composite showed the best performance for photocatalytic total ammonia nitrogen (TAN) removing, and a 90% TAN removing rate was achieved in 7 hours under visible light illumination (200 mW cm−2), which is approximately 3 times higher than that of pure g-C3N4. The increased photocatalytic property was contributed by the photon adsorption ability and electron transfer capacity, which were improved after GQD modification. The main photocatalytic end-product of TAN was NO3− which is a type of environmentally green ion. Further results indicated that the oxygen concentration and pH value of the reaction solution were very important for the photocatalytic ammonia degradation process. A better performance could be achieved under a higher oxygen concentration and pH value

    The role of miR-143-3p/FNDC1 axis on the progression of non-small cell lung cancer

    Get PDF
    The study aimed to explore the functional role of fibronectin type III domain containing 1 (FNDC1) in nonsmall cell lung cancer (NSCLC), as well as the mechanism governing its expression. The expression levels of FNDC1 and related genes in tissue and cell samples were detected by qRT-PCR. Kaplan-Meier analysis was employed to analyze the association between FNDC1 level and the overall survival of NSCLC patients. Functional experiments such as CCK-8 proliferation, colony formation, EDU staining, migration and invasion assays were conducted to investigate the functional role of FNDC1 in regulating the malignancy of NSCLC cells. Bioinformatic tools and dual-luciferase reporter assay were used to identify the miRNA regulator of FNDC1 in NSCLC cells. Our data revealed the upregulation of FNDC1 at mRNA and protein levels in NSCLC tumor tissues cancer cell lines, compared with normal counterparts. NSCLC patients with higher FNDC1 expression suffered from a poorer overall survival. FNDC1 knockdown significantly suppressed the proliferation, migration and invasion of NSCLC cells, and had an inhibitory effect on tube formation. We further demonstrated that miR-143-3p was an upstream regulator of FNDC1 and miR-143-3p expression was repressed in NSCLC samples. Similar to FNDC1 knockdown, miR-143-3p overexpression inhibited the growth, migration and invasion of NSCLC cells. FNDC1 overexpression could partially rescue the effect of miR-143-3p overexpression.  FNDC1 silencing also suppressed the tumorigenesis of NSCLC cells in mouse model. In conclusion, FNDC1 promotes the malignant prototypes of NSCLC cells. miR-143-3p is a negative regulator of FNDC1 in NSCLC cells, which may serve as a promising therapeutic target in NSCLC.

    Identification of a Novel Hypovirulence-Inducing Hypovirus From Alternaria alternata

    Get PDF
    Mycoviruses are wide spread throughout almost all groups of fungi but only a small number of mycoviruses can attenuate the growth and virulence of their fungal hosts. Alternaria alternata is an ascomycete fungus that causes leaf spot diseases on various crop plants. In this study, we identified a novel ssRNA mycovirus infecting an A. alternata f. sp. mali strain isolated from an apple orchard in China. Sequence analyses revealed that this virus is related to hypoviruses, in particular to Wuhan insect virus 14, an unclassified hypovirus identified from insect meta-transcriptomics, as well as other hypoviruses belonging to the genus Hypovirus, and therefore this virus is designed as Alternaria alternata hypovirus 1 (AaHV1). The genome of AaHV1 contains a single large open-reading frame encoding a putative polyprotein (∼479 kDa) with a cysteine proteinase-like and replication-associated domains. Curing AaHV1 from the fungal host strain indicated that the virus is responsible for the slow growth and reduced virulence of the host. AaHV1 defective RNA (D-RNA) with internal deletions emerging during fungal subcultures but the presence of D-RNA does not affect AaHV1 accumulation and pathogenicities. Moreover, AaHV1 could replicate and confer hypovirulence in Botryosphaeria dothidea, a fungal pathogen of apple white rot disease. This finding could facilitate better understanding of A. alternata pathogenicity and is relevant for development of biocontrol methods of fungal diseases

    Melatonin-Mediated Sugar Accumulation and Growth Inhibition in Apple Plants Involves Down-Regulation of Fructokinase 2 Expression and Activity

    Get PDF
    Melatonin has been reported to play roles in regulating carbohydrate levels and plant growth. However, little is known about the exact mechanism by which melatonin regulates sugar levels and growth in plants. In this study, it was found that high levels of melatonin inhibited the growth of wild-type (WT) apple plants and induced significant accumulations of fructose, glucose, and sucrose in apple leaves, while MdFRK2 expression was significantly downregulated. MdFRK2 promoter transiently expressed in tobacco leaves further supported that the expression of MdFRK2 could be inhibited by exogenous melatonin. After applying exogenous melatonin, the suppression of MdFRK2 expression was significantly rescued in transgenic apples overexpressing MdFRK2 via the 35S promoter. Fructose, glucose, and sucrose concentrations increased less as compared to WT apple plants. Wild-type plants showed a stunted phenotype 21 days after melatonin treatment, while MdFRK2-overexpressing plants exhibited slightly inhibited growth, indicating that the downregulated MdFRK2 expression in response to melatonin was involved in melatonin-mediated growth inhibition. Taken together, these results demonstrate the involvement of MdFRK2 in melatonin-induced sugar accumulation and growth inhibition. Our findings shed light on the roles played by MdFRK2 in connecting melatonin action and plant growth

    Serum metabolomics analysis in patients with alcohol dependence

    Get PDF
    ObjectiveAlcohol dependence (AD) is a chronic recurrent mental disease caused by long-term drinking. It is one of the most prevalent public health problems. However, AD diagnosis lacks objective biomarkers. This study was aimed to shed some light on potential biomarkers of AD patients by investigating the serum metabolomics profiles of AD patients and the controls.MethodsLiquid chromatography-mass spectrometry (LC–MS) was used to detect the serum metabolites of 29 AD patients (AD) and 28 controls. Six samples were set aside as the validation set (Control: n = 3; AD group: n = 3), and the remaining were used as the training set (Control: n = 26; AD group: n = 25). Principal component analysis (PCA) and partial least squares discriminant analysis (PCA-DA) were performed to analyze the training set samples. The metabolic pathways were analyzed using the MetPA database. The signal pathways with pathway impact >0.2, value of p <0.05, and FDR < 0.05 were selected. From the screened pathways, the metabolites whose levels changed by at least 3-fold were screened. The metabolites with no numerical overlap in their concentrations in the AD and the control groups were screened out and verified with the validation set.ResultsThe serum metabolomic profiles of the control and the AD groups were significantly different. We identified six significantly altered metabolic signal pathways, including protein digestion and absorption; alanine, aspartate, and glutamate metabolism; arginine biosynthesis; linoleic acid metabolism; butanoate metabolism; and GABAergic synapse. In these six signal pathways, the levels of 28 metabolites were found to be significantly altered. Of these, the alterations of 11 metabolites changed by at least 3-fold compared to the control group. Of these 11 metabolites, those with no numerical overlap in their concentrations between the AD and the control groups were GABA, 4-hydroxybutanoic acid, L-glutamic acid, citric acid and L-glutamine.ConclusionThe metabolite profile of the AD group was significantly different from that of the control group. GABA, 4-hydroxybutanoic acid, L-glutamic acid, citric acid, and L-glutamine could be used as potential diagnostic markers for AD

    Growth differentiation factor-15/adiponectin ratio as a potential biomarker for metabolic syndrome in Han Chinese

    Get PDF
    AimsGrowth differentiation factor-15 (GDF-15) and adiponectin are adipokines that regulate metabolism. This study aimed to evaluate the roles of GDF-15, adiponectin, and GDF-15/adiponectin ratio (G/A ratio) as biomarkers for detecting metabolic syndrome (MS).Materials and methodsThis cross-sectional study included 676 participants aged 20–70 years in Jurong, China. The participants were divided into four groups based on sex and age (<40 and ≥40 years). MS was defined according to the modified National Cholesterol Education Program Adult Treatment Panel III criteria. Receiver operating characteristic curves were used to evaluate the performance of GDF-15, adiponectin, and the G/A ratio in predicting MS.ResultsThe prevalence of MS was 22.0% (149/676). Logistic regression analysis indicated that the G/A ratio and adiponectin levels, but not GDF-15 levels, were correlated with MS [odds ratio; 95% CI 1.010 (1.006–1.013) and 0.798 (0.735–0.865), respectively] after adjusting for confounding factors. The G/A ratio displayed a significant relationship with MS in each subgroup and with each MS component in both men and women; however, adiponectin concentrations were significantly associated with MS and all its components only in men (all P <0.05). The area under the curve (AUC) of the G/A ratio and the adiponectin level for MS was 0.758 and 0.748, respectively. The highest AUC was 0.757 for the adiponectin level in men and 0.724 for the G/A ratio in women.ConclusionsThis study suggests that the G/A ratio and adiponectin are potential biomarkers for detecting MS in women and men, respectively

    Spectrophotometric analysis of phenols, which involves a hemin-graphene hybrid nanoparticles with peroxidase-like activity

    No full text
    Phenols are well known noxious compounds, which are often found in various water sources. A novel analytical method has been researched and developed based on the properties of hemin–graphene hybrid nanosheets (H–GNs). These nanosheets were synthesized using a wet-chemical method, and they have peroxidase-like activity. Also, in the presence of H2O2, the nanosheets are efficient catalysts for the oxidation of the substrate, 4-aminoantipine (4-AP), and the phenols. The products of such an oxidation reaction are the colored quinone-imines (benzodiazepines). Importantly, these products enabled the differentiation of the three common phenols – pyrocatechol, resorcin and hydroquinone, with the use of a novel, spectroscopic method, which was developed for the simultaneous determination of the above three analytes. This spectroscopic method produced linear calibrations for the pyrocatechol (0.4–4.0 mg L−1), resorcin (0.2–2.0 mg L−1) and hydroquinone (0.8–8.0 mg L−1) analytes. In addition, kinetic and spectral data, obtained from the formation of the colored benzodiazepines, were used to establish multi-variate calibrations for the prediction of the three phenol analytes found in various kinds of water; partial least squares (PLS), principal component regression (PCR) and artificial neural network (ANN) models were used and the PLS model performed best

    Graphene quantum dots and the resonance light scattering technique for trace analysis of phenol in different water samples

    No full text
    A novel, highly selective resonance light scattering (RLS) method was researched and developed for the analysis of phenol in different types of industrial water. An important aspect of the method involved the use of graphene quantum dots (GQDs), which were initially obtained from the pyrolysis of citric acid dissolved in aqueous solutions. The GQDs in the presence of horseradish peroxidase (HRP) and H2O2 were found to react quantitatively with phenol such that the RLS spectral band (310 nm) was quantitatively enhanced as a consequence of the interaction between the GQDs and the quinone formed in the above reaction. It was demonstrated that the novel analytical method had better selectivity and sensitivity for the determination of phenol in water as compared to other analytical methods found in the literature. Thus, trace amounts of phenol were detected over the linear ranges of 6.00×10−8–2.16×10−6 M and 2.40×10−6–2.88×10−5 M with a detection limit of 2.20×10−8 M. In addition, three different spiked waste water samples and two untreated lake water samples were analysed for phenol. Satisfactory results were obtained with the use of the novel, sensitive and rapid RLS method
    corecore