3 research outputs found

    Biallelic variants in FLII cause pediatric cardiomyopathy by disrupting cardiomyocyte cell adhesion and myofibril organization

    Get PDF
    Pediatric cardiomyopathy (CM) represents a group of rare, severe disorders that affect the myocardium. To date, the etiology and mechanisms underlying pediatric CM are incompletely understood, hampering accurate diagnosis and individualized therapy development. Here, we identified biallelic variants in the highly conserved flightless-I (FLII) gene in 3 families with idiopathic, early-onset dilated CM. We demonstrated that patient-specific FLII variants, when brought into the zebrafish genome using CRISPR/Cas9 genome editing, resulted in the manifestation of key aspects of morphological and functional abnormalities of the heart, as observed in our patients. Importantly, using these genetic animal models, complemented with in-depth loss-of-function studies, we provided insights into the function of Flii during ventricular chamber morphogenesis in vivo, including myofibril organization and cardiomyocyte cell adhesion, as well as trabeculation. In addition, we identified Flii function to be important for the regulation of Notch and Hippo signaling, crucial pathways associated with cardiac morphogenesis and function. Taken together, our data provide experimental evidence for a role for FLII in the pathogenesis of pediatric CM and report biallelic variants as a genetic cause of pediatric CM

    Coupling 3D Printing and Novel Replica Molding for In House Fabrication of Skeletal Muscle Tissue Engineering Devices

    Get PDF
    The transition from 2D to 3D engineered tissue cultures is changing the way biologists can perform in vitro functional studies. However, there has been a paucity in the establishment of methods required for the generation of microdevices and cost-effective scaling up. To date, approaches including multistep photolithography, milling and 3D printing have been used that involve specialized and expensive equipment or time-consuming steps with variable success. Here, a fabrication pipeline is presented based on affordable off-the-shelf 3D printers and novel replica molding strategies for rapid and easy in-house production of hundreds of 3D culture devices per day, with customizable size and geometry. This pipeline is applied to generate tissue engineered skeletal muscles in vitro using human induced pluripotent stem cell-derived myogenic progenitors. These production methods can be employed in any standard biomedical laboratory.</p

    Phenotypic variability of filamin C–related cardiomyopathy:Insights from a novel Dutch founder variant

    No full text
    Background: Dilated cardiomyopathy (DCM) can be caused by truncating variants in the filamin C gene (FLNC). A new pathogenic FLNC variant, c.6864_6867dup, p.(Val2290Argfs∗23), was recently identified in Dutch patients with DCM. Objectives: The report aimed to evaluate the phenotype of FLNC variant carriers and to determine whether this variant is a founder variant. Methods: Clinical and genetic data were retrospectively collected from variant carriers. Cardiovascular magnetic resonance studies were reassessed. Haplotypes were reconstructed to determine a founder effect. The geographical distribution and age of the variant were determined. Results: Thirty-three individuals (of whom 23 [70%] were female) from 9 families were identified. Sudden cardiac death was the first presentation in a carrier at the age of 28 years. The median age at diagnosis was 41 years (range 19–67 years). The phenotype was heterogeneous. DCM with left ventricular dilation and reduced ejection fraction (&lt;45%) was present in 11 (33%) individuals, 3 (9%) of whom underwent heart transplantation. Cardiovascular magnetic resonance showed late gadolinium enhancement in 13 (65%) of the assessed individuals, primarily in a ringlike distribution. Nonsustained ventricular arrhythmias were detected in 6 (18%), and 5 (15%) individuals received an implantable cardioverter-defibrillator. A shared haplotype spanning 2.1 Mb was found in all haplotyped individuals. The variant originated between 275 and 650 years ago. Conclusion: The pathogenic FLNC variant c.6864_6867dup, p.(Val2290Argfs∗23) is a founder variant originating from the south of the Netherlands. Carriers are susceptible to developing heart failure and ventricular arrhythmias. The cardiac phenotype is characterized by ringlike late gadolinium enhancement, even in individuals without significantly reduced left ventricular function.</p
    corecore