71 research outputs found

    On-Demand Resource Management for 6G Wireless Networks Using Knowledge-Assisted Dynamic Neural Networks

    Full text link
    On-demand service provisioning is a critical yet challenging issue in 6G wireless communication networks, since emerging services have significantly diverse requirements and the network resources become increasingly heterogeneous and dynamic. In this paper, we study the on-demand wireless resource orchestration problem with the focus on the computing delay in orchestration decision-making process. Specifically, we take the decision-making delay into the optimization problem. Then, a dynamic neural network (DyNN)-based method is proposed, where the model complexity can be adjusted according to the service requirements. We further build a knowledge base representing the relationship among the service requirements, available computing resources, and the resource allocation performance. By exploiting the knowledge, the width of DyNN can be selected in a timely manner, further improving the performance of orchestration. Simulation results show that the proposed scheme significantly outperforms the traditional static neural network, and also shows sufficient flexibility in on-demand service provisioning

    Knowledge-Driven Multi-Agent Reinforcement Learning for Computation Offloading in Cybertwin-Enabled Internet of Vehicles

    Full text link
    By offloading computation-intensive tasks of vehicles to roadside units (RSUs), mobile edge computing (MEC) in the Internet of Vehicles (IoV) can relieve the onboard computation burden. However, existing model-based task offloading methods suffer from heavy computational complexity with the increase of vehicles and data-driven methods lack interpretability. To address these challenges, in this paper, we propose a knowledge-driven multi-agent reinforcement learning (KMARL) approach to reduce the latency of task offloading in cybertwin-enabled IoV. Specifically, in the considered scenario, the cybertwin serves as a communication agent for each vehicle to exchange information and make offloading decisions in the virtual space. To reduce the latency of task offloading, a KMARL approach is proposed to select the optimal offloading option for each vehicle, where graph neural networks are employed by leveraging domain knowledge concerning graph-structure communication topology and permutation invariance into neural networks. Numerical results show that our proposed KMARL yields higher rewards and demonstrates improved scalability compared with other methods, benefitting from the integration of domain knowledge

    Investigation of Carbon Tax Pilot in YRD Urban Agglomerations—Analysis and Application of a Novel ESER System with Carbon Tax Constraints

    Get PDF
    AbstractThis paper attempts to explore the dynamic behavior of energy-saving and emission-reduction (ESER) system in Yangtze River Delta (YRD) urban agglomerations, which has not yet been reported in present literature. The novel YRD urban agglomerations carbon tax attractor is achieved. A scenario study is carried out. The results show that, the ESER system in YRD urban agglomerations is superior to the average case in China, in which the impacts on economic growth are almost the same. The economic property of YRD urban agglomerations is the main cause why the ESER system of YRD urban agglomerations being superior

    Scalable Resource Management for Dynamic MEC: An Unsupervised Link-Output Graph Neural Network Approach

    Full text link
    Deep learning has been successfully adopted in mobile edge computing (MEC) to optimize task offloading and resource allocation. However, the dynamics of edge networks raise two challenges in neural network (NN)-based optimization methods: low scalability and high training costs. Although conventional node-output graph neural networks (GNN) can extract features of edge nodes when the network scales, they fail to handle a new scalability issue whereas the dimension of the decision space may change as the network scales. To address the issue, in this paper, a novel link-output GNN (LOGNN)-based resource management approach is proposed to flexibly optimize the resource allocation in MEC for an arbitrary number of edge nodes with extremely low algorithm inference delay. Moreover, a label-free unsupervised method is applied to train the LOGNN efficiently, where the gradient of edge tasks processing delay with respect to the LOGNN parameters is derived explicitly. In addition, a theoretical analysis of the scalability of the node-output GNN and link-output GNN is performed. Simulation results show that the proposed LOGNN can efficiently optimize the MEC resource allocation problem in a scalable way, with an arbitrary number of servers and users. In addition, the proposed unsupervised training method has better convergence performance and speed than supervised learning and reinforcement learning-based training methods. The code is available at \url{https://github.com/UNIC-Lab/LOGNN}

    Mutations in TUBB8 and Human Oocyte Meiotic Arrest

    Get PDF
    BACKGROUND Human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown. METHODS We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other β-tubulin isotypes was assessed in human oocytes, early embryos, sperm cells, and several somatic tissues by means of a quantitative reverse- transcriptase–polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one β-tubulin polypeptide (α/β-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes. RESULTS We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed β-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes. CONCLUSIONS TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility. (Funded by the National Basic Research Program of China and others.

    Transceiver Design to Maximize the Weighted Sum Secrecy Rate in Full-Duplex SWIPT Systems

    No full text
    • …
    corecore