53 research outputs found

    Fast Start-Up Microfluidic Microbial Fuel Cells With Serpentine Microchannel

    Get PDF
    Microfluidic microbial fuel cells (MMFCs) are promising green power sources for future ultra-small electronic devices. The MMFCs with co-laminar microfluidic structure are superior to other MMFCs according to their low internal resistance and relative high power density. However, the area for interfacial electron transfer between the bacteria and the anode is quite limited in the typical Y-shaped device, which apparently restricts the current generation performance. In this study, we developed a membraneless MMFC with serpentine microchannel to enhance the interfacial electron transfer and promote the power generation of the device. Owing to the merit of laminar flow, the proposed MMFC was working well without any proton exchange membrane (PEM). At the same time, the serpentine microchannel greatly increased the power density. The S-MMFC catalyzed by Shewanella putrefaciens CN32 achieves a peak power density of 360 mW/m2 with the optimal channel configuration and the flow rate of 5 ml/h. Meanwhile, this device possesses much shorter start-up time and much longer duration time at high current plateau than the previous reported MMFCs. The presented MMFC appears promising for biochip technology and extends the scope of microfluidic energy

    Advanced Geological Prediction

    Get PDF
    Due to the particularity of the tunnel project, it is difficult to find out the exact geological conditions of the tunnel body during the survey stage. Once it encounters unfavorable geological bodies such as faults, fracture zones, and karst, it will bring great challenges to the construction and will easily cause major problems, economic losses, and casualties. Therefore, it is necessary to carry out geological forecast work in the tunnel construction process, which is of great significance for tunnel safety construction and avoiding major disaster accident losses. This lecture mainly introduces the commonly used methods of geological forecast in tunnel construction, the design principles, and contents of geological forecast and combines typical cases to show the implementation process of comprehensive geological forecast. Finally, the development direction of geological forecast theory, method, and technology is carried out. Prospects provide a useful reference for promoting the development of geological forecast of tunnels

    Association between weight-adjusted-waist index and the risk of hyperuricemia in adults: a population-based investigation

    Get PDF
    ObjectiveThis investigation sought to elucidate the potential correlation between a recently characterized adiposity metric, termed the Weight-Adjusted-Waist Index (WWI) and hyperuricemia.MethodsA cross-sectional design was employed in this study, featuring both hyperuricemic and non-hyperuricemic subjects with complete WWI data, sourced from the National Health and Nutrition Examination Survey (NHANES) spanning 2017 to March 2020. WWI was calculated utilizing the formula which involves the division of waist circumference (WC) by the square root of the body weight. In order to determine the relationship between WWI and hyperuricemia, both univariate and multivariate logistic regression models, appropriately weighted, were employed in the analysis. The linearity of relationships was validated using smooth curve fitting. Additionally, subgroup evaluations and interaction assessments were conducted.ResultsThe study sample comprised 7437 subjects, yielding a hyperuricemia prevalence of 18.22%. Stratifying WWI into tertiles, a progressive rise in hyperuricemia prevalence was evident with increasing WWI (Tertile 1: 11.62%, Tertile 2: 17.91%, Tertile 3: 25.13%). The odds ratio (OR) demonstrated that individuals within the highest WWI tertile were significantly more prone to hyperuricemia than those in the lowest tertile (OR = 2.41, 95% CI: 1.88-3.08).ConclusionThis study provides evidence that an elevated WWI is correlated with an increased risk of hyperuricemia in the adult population of the United States. These results suggest that WWI may serve as a viable anthropometric indicator for predicting hyperuricemia

    Myricetin alleviates H2O2-induced senescence and apoptosis in rat nucleus pulposus-derived mesenchymal stem cells

    Get PDF
    Introduction. Transplantation of mesenchymal stem cells (MSCs) has been reported to be a novel promising target for the regeneration of degenerated intervertebral discs (IVDs). However, the culture and survival limitations of MSCs remain challenging for MSC-based biological therapy. Myricetin, a common natural flavonoid, has been suggested to possess antiaging and antioxidant abilities. Therefore, we investigated the biological function of myricetin, and its related mechanisms involving cell senescence in intervertebral disc degeneration (IDD). Material and methods. The nucleus pulposus-derived mesenchymal stem cells (NPMSCs) were isolated from 4-month-old Sprague-Dawley (SD) rats and identified by examining surface markers and multipotent differentiation. Rat NPMSCs were cultured in an MSC culture medium or culture medium with different concentrations of H2O2. Myricetin or the combination of myricetin and EX527 were added to the culture medium to investigate the effects of myricetin. Cell viability was evaluated by cell counting kit-8 assays (CCK-8). The apoptosis rate was determined using Annexin V/PI dual staining. The mitochondrial membrane potential (MMP) was analyzed by a fluorescence microscope after JC-1 staining. The cell senescence was determined by SA-β-Gal staining. MitoSOX green was used to selectively estimate mitochondrial reactive oxygen species (ROS) Apoptosis-associated proteins (Bax, Bcl2, and cleaved caspase-3), senescence markers (p16, p21, and p53), and SIRT1/PGC-1α signaling pathway-related proteins (SIRT1 and PGC-1α) were evaluated by western blotting. Results. The cells isolated from nucleus pulposus (NP) tissues met the criteria for MSCs. Myricetin showed no cytotoxicity up to a concentration of 100 μM in rat NPMSCs cultured for 24 h. Myricetin pretreatment exhibited protective effects against H2O2-induced apoptosis. Myricetin could also alleviate H2O2-induced mitochondrial dysfunctions of increased mitochondrial ROS production and reduced MMP. Moreover, myricetin pretreatment delayed rat NPMSC senescence, as evidenced by decreased senescence indicators and reduced SA-β-Gal activity. Pretreatment of NPMSCs with 10 μM EX527, a selective inhibitor of SIRT1, prior to exposure to 100 μM H2O2, reversed the inhibitory effects of myricetin on cell apoptosis. Conclusions. Myricetin could affect the SIRT1/PGC-1α pathway to protect mitochondrial functions and alleviate cell senescence in H2O2-treated NPMSCs

    Elastic loading enhanced NH3 sensing for surface acoustic wave sensor with highly porous nitrogen doped diamond like carbon film

    Get PDF
    We proposed a surface acoustic wave (SAW) NH3 gas sensor based on nitrogen doped diamond like carbon (N-DLC) film. The N-DLC film, prepared using a microwave electron cyclotron resonance plasma chemical vapor deposition (ECR-PECVD) method, is highly porous and physically and chemically stable, and have active polar groups on its surface, which can selectively absorb polar NH3 gas molecules. These features of the film lead to the high sensitivity, low noise and excellent stability of the sensor. The sensor can achieve capabilities of in-situ monitoring NH3 in a concentration range from 100 ppb to 100 ppm with fast response (∼5 s) and recovery (∼29 s) at room temperature. The NH3 sensing mechanism is attributed to the decreased porosity of the N-DLC film caused by adsorbed NH3 molecules on its polar groups, which leads an increase of the elastic modulus of the film

    H2S gas sensing performance and mechanisms using CuO-Al2O3 composite films based on both surface acoustic wave and chemiresistor techniques

    Get PDF
    Surface acoustic wave and chemiresistor based gas sensors integrated with a sensing layer of sol-gel CuO-Al2O3 composite film were fabricated and their performance and mechanisms for H2S sensing were characterized and compared. In the composite film, CuO nanoparticles provide active sites for adsorption and reaction of H2S molecules while Al2O3 nanoparticles help to form a uniform and mesoporous film structure, both of which enhance the sensitivity of the sensors by providing numerous active CuO surfaces. Through the comparative studies, the SAW based H2S sensor operated at room temperature showed a lower detection limit, higher sensitivity, better linearity and good selectivity to H2S gas with its concentration ranging from 5 ppb to 100 ppm, compared with those of the chemiresistor sensor, which are mainly attributed to the effective mass sensing properties of the SAW sensor, because a minor change in the mass of the film caused by adsorbed H2S molecules would lead to a significant and monotonous change of the resonant frequency of the SAW devices

    Associations between cadmium exposure and whole-body aging: mediation analysis in the NHANES

    No full text
    Abstract Introduction Even though cadmium (Cd) exposure and cellular senescence (telomere length) have been linked in previous studies, composite molecular aging biomarkers are more significant and reliable factors to consider when examining the connection between metal exposure and health outcomes. The purpose of this research was to assess the association between urinary cadmium (U-Cd) and whole-body aging (phenotypic age). Methods Phenotypic age was calculated from chronological age and 9 molecular biomarkers. Multivariate linear regression models, subgroup analysis, and smoothing curve fitting were used to explore the linear and nonlinear relationship between U-Cd and phenotypic age. Mediation analysis was performed to explore the mediating effect of U-Cd on the association between smoking and phenotypic age. Results This study included 10,083 participants with a mean chronological age and a mean phenotypic age of 42.24 years and 42.34 years, respectively. In the fully adjusted model, there was a positive relationship between U-Cd and phenotypic age [2.13 years per 1 ng/g U-Cd, (1.67, 2.58)]. This association differed by sex, age, and smoking subgroups (P for interaction < 0.05). U-Cd mediated a positive association between serum cotinine and phenotypic age, mediating a proportion of 23.2%. Conclusions Our results suggest that high levels of Cd exposure are associated with whole-body aging
    • …
    corecore