3 research outputs found

    Proteomics in Pancreatic Cancer Research

    Get PDF
    Pancreatic cancer is a highly aggressive malignancy with a poor prognosis and deeply affects the life of people. Therefore, the earlier diagnosis and better treatments are urgently needed. In recent years, the proteomic technologies are well established and growing rapidly and have been widely applied in clinical applications, especially in pancreatic cancer research. In this paper, we attempt to discuss the development of current proteomic technologies and the application of proteomics to the field of pancreatic cancer research. This will explore the potential perspective in revealing pathogenesis, making the diagnosis earlier and treatment

    The associations between gut microbiota and chronic respiratory diseases: a Mendelian randomization study

    Get PDF
    IntroductionGrowing evidence indicates that variations in the composition of the gut microbiota are linked to the onset and progression of chronic respiratory diseases (CRDs), albeit the causal relationship between the two remains unclear.MethodsWe conducted a comprehensive two-sample Mendelian randomization (MR) analysis to investigate the relationship between gut microbiota and five main CRDs, including chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), sarcoidosis, and pneumoconiosis. For MR analysis, the inverse variance weighted (IVW) method was utilized as the primary method. The MR–Egger, weighted median, and MR-PRESSO statistical methods were used as a supplement. To detect heterogeneity and pleiotropy, the Cochrane and Rucker Q test, MR–Egger intercept test, and MR-PRESSO global test were then implemented. The leave-one-out strategy was also applied to assess the consistency of the MR results.ResultsBased on substantial genetic data obtained from genome-wide association studies (GWAS) comprising 3,504,473 European participants, our study offers evidence that several gut microbial taxa, including 14 probable microbial taxa (specifically, 5, 3, 2, 3 and 1 for COPD, asthma, IPF, sarcoidosis, and pneumoconiosis, respectively) and 33 possible microbial taxa (specifically, 6, 7, 8, 7 and 5 for COPD, asthma, IPF, sarcoidosis, and pneumoconiosis, respectively) play significant roles in the formation of CRDs.DiscussionThis work implies causal relationships between the gut microbiota and CRDs, thereby shedding new light on the gut microbiota-mediated prevention of CRDs
    corecore