3,194 research outputs found

    Highly excited and exotic fully-strange tetraquark states

    Full text link
    Some hadrons have the exotic quantum numbers that the traditional qˉq\bar q q mesons and qqqqqq baryons can not reach, such as JPC=0/0+/1+/2+/3+/4+J^{PC} = 0^{--}/0^{+-}/1^{-+}/2^{+-}/3^{-+}/4^{+-}, etc. We investigate for the first time the exotic quantum number JPC=4+J^{PC}=4^{+-}, and study the fully-strange tetraquark states with such an exotic quantum number. We systematically construct all the diquark-antidiquark interpolating currents, and apply the method of QCD sum rules to calculate both the diagonal and off-diagonal correlation functions. The obtained results are used to construct three mixing currents that are nearly non-correlated, and we use one of them to extract the mass of the lowest-lying state to be 2.850.22+0.192.85^{+0.19}_{-0.22} GeV. We apply the Fierz rearrangement to transform this mixing current to be the combination of three meson-meson currents, and the obtained Fierz identity suggests that this state dominantly decays into the PP-wave ϕ(1020)f2(1525)\phi(1020) f_2^\prime(1525) channel. This fully-strange tetraquark state of JPC=4+J^{PC}=4^{+-} is a purely exotic hadron to be potentially observed in future particle experiments.Comment: 8 pages, 7 figures, 1 table, revised version to be published in EPJ

    A potential superhard material m-BCN

    No full text
    We here propose a new superhard material m-BCN with comparable Vickers hardness to cBN by the use of first-principles calculations. The calculations show that the mentioned m-BCN is a thermodynamically and kinetically stable semiconductor. Hydrostatic calculation shows that it is anisotropic and its incompressibility is very close to c-BN. Structural analysis shows that its excellent mechanical property and thermodynamically stability are inherited from diamond and cBN. These results provide a new clue to find new superhard phase.Запропоновано новий надтвердий матеріал m-BCN, твердість за Віккерсом якого за розрахунками за першими принципами порівняна з твердістю cBN. Розрахунки показали, що згаданий m-BCN за термодинамічними і кінетичними показниками є стабільним напівпровідником. Гідростатичний розрахунок показав, що він є анізотропним і його нестисливість дуже близька до нестисливості cBN. Структурний аналіз показав, що його відмінні механічні властивості і термодинамічна стабільність успадковані від алмаза і cBN. Дані результати забезпечують нову схему пошуку нових надтвердих фаз.Предложен новый сверхтвердый материал m-BCN, твердость по Виккерсу которого по расчетам по первым принципам сравнима с твердостью cBN. Расчеты показывают, что упомянутый m-BCN по термодинамическим и кинетическим показателям является стабильным полупроводником. Гидростатический расчет показал, что он анизотропный и его несжимаемость очень близка к несжимаемости cBN. Структурный анализ показал, что его отличные механические свойства и термодинамическая стабильность унаследованы от алмаза и cBN. Данные результаты обеспечивают новую схему поиска новых сверхтвердых фаз

    Cooling mechanical resonators to quantum ground state from room temperature

    Full text link
    Ground-state cooling of mesoscopic mechanical resonators is a fundamental requirement for test of quantum theory and for implementation of quantum information. We analyze the cavity optomechanical cooling limits in the intermediate coupling regime, where the light-enhanced optomechanical coupling strength is comparable with the cavity decay rate. It is found that in this regime the cooling breaks through the limits in both the strong and weak coupling regimes. The lowest cooling limit is derived analytically at the optimal conditions of cavity decay rate and coupling strength. In essence, cooling to the quantum ground state requires Qm>2.4nthQ_{\mathrm{m}}>2.4n_{\mathrm{th}% }, with QmQ_{\mathrm{m}} being the mechanical quality factor and nthn_{\mathrm{th}} being the thermal phonon number. Remarkably, ground-state cooling is achievable starting from room temperature, when mechanical QQ-frequency product Qmν>1.5×1013Q_{\mathrm{m}}{\nu>1.5}\times10^{13}, and both of the cavity decay rate and the coupling strength exceed the thermal decoherence rate. Our study provides a general framework for optimizing the backaction cooling of mesoscopic mechanical resonators

    QCD sum rule studies on the sssˉsˉs s \bar s \bar s tetraquark states of JPC=0+J^{PC} = 0^{-+}

    Full text link
    We apply the method of QCD sum rules to study the sssˉsˉs s \bar s \bar s tetraquark states of JPC=0+J^{PC} = 0^{-+}. We construct all the relevant sssˉsˉs s \bar s \bar s tetraquark currents, and find that there are only two independent ones. We use them to further construct two weakly-correlated mixed currents. One of them leads to reliable QCD sum rule results and the mass is extracted to be 2.510.12+0.152.51^{+0.15}_{-0.12} GeV, suggesting that the X(2370)X(2370) or the X(2500)X(2500) can be explained as the sssˉsˉss\bar s\bar s tetraquark state of JPC=0+J^{PC} = 0^{-+}. To verify this interpretation, we propose to further study the ππ/KKˉ\pi\pi/K \bar K invariant mass spectra of the J/ψγππη/γKKˉηJ/\psi \to \gamma \pi \pi \eta^\prime/\gamma K \bar K \eta^\prime decays in BESIII to examine whether there exists the f0(980)f_0(980) resonance.Comment: 8 pages, 6 figures, suggestions and comments are welcom
    corecore