1,485 research outputs found

    Symmetry-guided nonrigid registration: the case for distortion correction in multidimensional photoemission spectroscopy

    Full text link
    Image symmetrization is an effective strategy to correct symmetry distortion in experimental data for which symmetry is essential in the subsequent analysis. In the process, a coordinate transform, the symmetrization transform, is required to undo the distortion. The transform may be determined by image registration (i.e. alignment) with symmetry constraints imposed in the registration target and in the iterative parameter tuning, which we call symmetry-guided registration. An example use case of image symmetrization is found in electronic band structure mapping by multidimensional photoemission spectroscopy, which employs a 3D time-of-flight detector to measure electrons sorted into the momentum (kxk_x, kyk_y) and energy (EE) coordinates. In reality, imperfect instrument design, sample geometry and experimental settings cause distortion of the photoelectron trajectories and, therefore, the symmetry in the measured band structure, which hinders the full understanding and use of the volumetric datasets. We demonstrate that symmetry-guided registration can correct the symmetry distortion in the momentum-resolved photoemission patterns. Using proposed symmetry metrics, we show quantitatively that the iterative approach to symmetrization outperforms its non-iterative counterpart in the restored symmetry of the outcome while preserving the average shape of the photoemission pattern. Our approach is generalizable to distortion corrections in different types of symmetries and should also find applications in other experimental methods that produce images with similar features

    Study of the quasi-two-body decays B^{0}_{s} \rightarrow \psi(3770)(\psi(3686))\pi^+\pi^- with perturbative QCD approach

    Full text link
    In this note, we study the contributions from the S-wave resonances, f_{0}(980) and f_{0}(1500), to the B^{0}_{s}\rightarrow \psi(3770)\pi^ {+}\pi^{-} decay by introducing the S-wave \pi\pi distribution amplitudes within the framework of the perturbative QCD approach. Both resonant and nonresonant contributions are contained in the scalar form factor in the S-wave distribution amplitude \Phi^S_{\pi\pi}. Since the vector charmonium meson \psi(3770) is a S-D wave mixed state, we calculated the branching ratios of S-wave and D-wave respectively, and the results indicate that f_{0}(980) is the main contribution of the considered decay, and the branching ratio of the \psi(2S) mode is in good agreement with the experimental data. We also take the S-D mixed effect into the B^{0}_{s}\rightarrow \psi(3686)\pi^ {+}\pi^{-} decay. Our calculations show that the branching ratio of B^{0}_{s}\rightarrow \psi(3770)(\psi(3686))\pi^ {+}\pi^{-} can be at the order of 10^{-5}, which can be tested by the running LHC-b experiments.Comment: 10 pages, 3 figure

    Possible open-charmed pentaquark molecule Ωc(3188)\Omega_c(3188) --- the DΞD \Xi bound state --- in the Bethe-Salpeter formalism

    Full text link
    We study the SS-wave DΞD\Xi bound state in the Bethe-Salpeter formalism in the ladder and instantaneous approximations. With the kernel generated by the hadronic effective Lagrangian, two open-charmed bound states, which quantum numbers are I=0I=0, JP=(12)−J^P=(\frac{1}{2})^- and I=1I=1, JP=(12)−J^P=(\frac{1}{2})^-, respectively, are predicted as new candidates of hadronic pentaquark molecules in our formalism. If existing, they could contribute to the broad 3188 eV structure near the five new narrow Ωc\Omega_c states observed recently by the LHCb Collaboration.Comment: 8 pages, 4 figures, accepted by Eur. Phys. J.
    • …
    corecore