4,837 research outputs found

    Quantum percolation in quantum spin Hall antidot systems

    Get PDF
    We study the influences of antidot-induced bound states on transport properties of two- dimensional quantum spin Hall insulators. The bound statesare found able to induce quantum percolation in the originally insulating bulk. At some critical antidot densities, the quantum spin Hall phase can be completely destroyed due to the maximum quantum percolation. For systems with periodic boundaries, the maximum quantum percolationbetween the bound states creates intermediate extended states in the bulk which is originally gapped and insulating. The antidot in- duced bound states plays the same role as the magnetic field inthe quantum Hall effect, both makes electrons go into cyclotron motions. We also draw an analogy between the quantum percolation phenomena in this system and that in the network models of quantum Hall effect

    Surface-edge state and half quantized Hall conductance in topological insulators

    Get PDF
    We propose a surface-edge state theory for half quantized Hall conductance of surface states in topological insulators. The gap opening of a single Dirac cone for the surface states in a weak magnetic field is demonstrated. We find a new surface state resides on the surface edges and carries chiral edge current, resulting in a half-quantized Hall conductance in a four-terminal setup. We also give a physical interpretation of the half quantized conductance by showing that this state is the product of splitting of a boundary bound state of massive Dirac fermions which carries a conductance quantum

    Electric field modulation of topological order in thin film semiconductors

    Get PDF
    We propose a method that can consecutively modulate the topological orders or the number of helical edge states in ultrathin film semiconductors without a magnetic field. By applying a staggered periodic potential, the system undergoes a transition from a topological trivial insulating state into a non-trivial one with helical edge states emerging in the band gap. Further study demonstrates that the number of helical edge state can be modulated by the amplitude and the geometry of the electric potential in a step-wise fashion, which is analogous to tuning the integer quantum Hall conductance by a megntic field. We address the feasibility of experimental measurement of this topological transition.Comment: 4 pages, 4 figure
    • …
    corecore