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We propose a method that can be used to modulate the topological orders or the number of helical edge
states in ultrathin-film semiconductors without a magnetic field. By applying a staggered periodic potential, the
system undergoes a transition from a topological trivial insulating state into a nontrivial one with helical edge
states emerging in the band gap. Further study demonstrates that the number of helical edge states can be
modulated by the amplitude and the geometry of the electric potential in a stepwise fashion, which is analogous
to tuning the integer quantum Hall conductance by a magnetic field. We address the feasibility of experimental
measurement of this topological transition.
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I. INTRODUCTION

Edge and surface physics arising from the topological in-
sulators have been a major research focus in the condensed-
matter physics recently.1–10 Usually spin-orbit coupling in
these materials is so strong that the band gap between the
conduction and valence bands can be inverted. In this case
edge states or surface states emerge in the band gap, pro-
tected by time-reversal symmetry. The Z2 invariant is estab-
lished to govern the topological properties of both two-
dimensional �2D� and three-dimensional �3D� topological
insulators.11,12 Searching for this topological state of quan-
tum matter has been focused on specific materials such as
HgTe/CdTe quantum wells,4 bismuth alloys,7–10 and
transition-metal oxide Na2IrO3.13 It was observed that there
are five surface states in Bi1−xSbx �Ref. 7� and single Dirac
cone in Bi2Se3 �Ref. 8� and Bi2Te3 �Ref. 10� while there is
only a pair of helical edge states in HgTe/CdTe quantum
wells.4,14 Up to now there is neither experimental report nor
theoretical proposal to tune the topological number in these
systems in a controllable way. It would be both theoretically
and experimentally interesting if the topological number or
the number of the helical edge states or surface states can be
modulated like the quantum Hall conductance in a magnetic
field.

In this paper, we propose a feasible approach to modulate
consecutively the pair number of helical edge states by an
electric means. To be specific, we consider a quasi-two-
dimensional semiconductor thin film or quantum well with
strong spin-orbit coupling, which can be either topologically
trivial or nontrivial. We apply a lateral surface superlattice
�SSL� that creates a periodic potential on the film. It is found
that the system changes from a trivial insulator into a quan-
tum spin-Hall �QSH� insulator with helical edge states
emerging at the sample edges. This phenomenon can be un-
derstood intuitively as the periodic potential splits the band
structure into multiminibands, inverts the band gap and
changes the Z2 order of the bulk. However, unlike the QSH
insulator, the band inversion story does not stop here. By
further increasing the gate geometry or potential magnitude,
the pair number of helical edge states goes up stepwise while
the bulk band gap remains finite. In this manner we create a
topological insulator whose edge states are tunable by purely
electrical means.

II. MODEL AND BAND FOLDING

We start with an effective four-band Hamiltonian with the
time-reversal invariance,

H0 = �h+�− i�x,− i�y� 0

0 h−�− i�x,− i�y�
� , �1�

where h�=+D��x
2+�y

2�+A�−i�x�y + i�y�x�� �� /2+B
��x

2+�y
2���z and �� are the Pauli matrices. The model was

first introduced for the HgTe/CdTe quantum well for QSH
effect by Bernevig et al.,3 and recently was derived for an
ultrathin film of 3D topological insulator.15 The two cases
have different basis although the forms are identical. h� con-
sists of the invariants in the irreducible representation D1/2 of
SU�2� group.16 The whole model H0 keeps the time-reversal
invariance. h+ and h− are the “time” reversal counterparts
under the operation �=−i�yK, where K is the complex con-
jugate operator, h+=�−1h−�. The block diagonalized form in
H0 allows us to study h+ and h− separately and then put
together to gain the physics for H0. Additional terms such as
those of bulk or structure inversion asymmetry can couple
them together. Here we first assume that these effects are
weak and negligible. All numerical calculations presented in
Figs. 2–4 are for h+. The results for h− can be obtained by
using time reversal operation.

The idea of a lateral SSL dates back to the 1970s. Various
alternative techniques are known capable of creating SSLs.17

It is known that periodic potential created by SSLs induces
Bloch minibands and minigaps on a two-dimensional elec-
tron gas �2DEG�, which results in interesting transport be-
haviors. Consider this model on a SSL. To be specific and
without loss of generality, we introduce a square-wave-
shaped periodic potential,

V�y� = � V0 0 � y � d/2
− V0 − d/2 � y � 0

� �2�

and V�y+d�=V�y�. We write the Fourier series for V�y� as
V�y�=	nVneinQy with the reciprocal vector Q=2	 /d and the
Fourier-transform component Vn=2iV0 /n	�n= �1, �3, . . .�.
According to the Bloch theorem,18 the single-particle wave
function of h+ for the band 
n,k

s in this periodic potential V�y�
has the form �n

s�x ,y�=ei�kxx+kyy�un,ky

s �y� with un,ky

s �y�
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=un,ky

s �y+d�, where ky is confined in the first Brillouin zone
�BZ� ky � �−Q /2,+Q /2�, n is an integer, and the superscript
s�=c ,v� denotes the conduction �c� and valence �v� band.
The wave function can be expressed as un,ky

s �y�
=	mCn,ky

s �m�eimQy with the coefficients Cn,ky
determined by

the central equation

�h+�kx,mQ + ky� − 
n,k
s �Cn,ky

s �m� + 	
l

VlCn,ky

s �m − l� = 0

�3�

with the condition Cn,ky

s �m�=�n,mCn,ky

s �n� for V=0. In this
way, the electron band is folded into many minibands con-
fined in the first BZ as illustrated schematically in Figs. 1�a�
and 1�b�, where the labels �n ,s� represent different mini-
bands.

In the presence of V, the miniband structure can be ob-
tained numerically by solving the central equation. It is
found that when the potential V increases the conduction
minibands shift down and the valence minibands shift up,
eventually the two bands cross and form a inverted band gap
as shown in Fig. 1�c�. Anticrossing between the two bands
occurs, which is induced by the interaction term A. A simple
perturbative viewpoint helps us to apprehend why the peri-
odic potential V tends to induce the band inversion. Take the
band �0,c� for our illustration. For a weak V, the calculation
up to the second-order perturbation gives the energy correc-
tion for the band �0,c�,

�
0,k
c = 	

m,s,ky�


�u0,ky

c 
V�r�
um,ky�
s �
2


0,k
c − 
m,ky�

s , �4�

here the summation excludes the band �0,c� itself, um,ky�
s and


n,k
s are the unperturbed eigenstate and eigenenergy of the

miniband in the first BZ. Using the Fourier series of the
potential, we have �u0,ky

c 
V�r�
um,ky�
s �=V−m�ky,ky�

�u0,ky

c 
um,ky

s �.
V�r� couples the band �0,c� and other conduction bands
�n ,s=c� stronger than the valence bands since they come
from same original bands and share the same spin indices.
We have 
�u0,ky

c 
um,ky

c �

 
�u0,ky

c 
um,ky

v �
. Thus we draw the
conclusion that the perturbative correction is always nega-
tive, �
0,k

c �0, whose effect is shifting the band �0,c� down-
ward. Similarly, the valence band �0,v� shifts upward in the
field. At a certain value of V, the two bands cross and open a
gap again, i.e., a negative one. Similar argument can be ap-
plied to other minibands. With increasing V, more and more
minibands will cross near the zero-energy point. Thus the
band inversion occurs consecutively because of the shifting
of the minibands from the conduction and valence bands.

III. MODULATION OF CHERN NUMBER

The formation of the inverted band gap is of topological
and experimental interests. To gain a quantitative insight of

(a)

c

v (c)

1,c

−1,c
0,c

1,v

−1,v
0,v

(b)

1,c

−1,c
0,c

1,v

−1,v
0,v

FIG. 1. Evolution of energy bands in a modulated periodic po-
tential. �a� The band in the absence of periodic potential; �b� mini-
bands formed in a periodic potential; �c� shifting of the minibands
leads to the band inversion and band anticrossing.
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FIG. 2. �Color online� The phase diagram of Chern number in
�V0 ,d� plane for the model of h+ with the Fermi energy Ef =0, �a�
� /2=0.01 and �b� � /2=−0.01. The dashed line in �a� is obtained
by solving Eq. �2� in the truncation approximation for m=0 and �1
in Cm,ky

s . Other parameters are A=−B=1, D=0, and the lattice space
a=1. The Chern number will change a minus sign for the corre-
sponding part of h−.
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FIG. 3. �Color online� ��a�–�d�� Energy dispersion for the first
valence and conduction band of h+ for various periodic potential
strengths �a� V0=0.06; �b� 0.14; �c� 0.23; and �d� 0.26. Dark gray
�red� indicates the dominant eigenstate is spin up, light gray �blue�
indicates the dominant eigenstate is spin down. The other param-
eters are � /2=0.01, d=30. �a� and �b� corresponds to the transi-
tion of C=0→1. �c� and �d� corresponds to the transition of C=1
→2. ��e�–�h�� Berry curvatures of the valence band around � point
corresponding to the band structures �a�–�d�, respectively.
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this physical picture, we discretize the Hamiltonian h+�k� in
Eq. �2� on a square lattice. To have a band insulator in h+�k�,
it is required that 
B
� 
D
. For the purpose of numerical
calculation, we make the parameters material independent by
setting A=−B=1, D=0, and the lattice space a=1. Other
choices such as nonzero D or A�−B will not change the
conclusion in the present work qualitatively. Eigenenergies
and eigenstates are solved numerically for the periodic sys-
tem. Following Thouless et al.,19 we come to calculate the
Hall conductance of h+ in the band gap, which is equivalent
to the Chern number of the filled valence bands. The Berry
curvature for each band is defined as20

�n,s�k� = i�
 �un,k
s

�kx


�un,k

s

�ky
� − 
 �un,k

s

�ky


�un,k

s

�kx
�� . �5�

The first Chern number in the band gap is then computed by
summing up Berry curvatures of the occupied bands and
integrate over the first BZ C= 1

2		n��d2k�n,v�k�. The Hall
conductance for h+ is related to the first Chern number by
�xy = e2

h C.19,21 In the absence of the potential, the Chern num-
ber was found to be C=−�sgn���+sgn�B�� /2,15 which is in
agreement with the existence condition of solution of edge
states in the Schrödinger equation in Eq. �1�.22 The signs of
the two model parameters in the term �� /2−Bk2��z of h+
determine the value of C, 0, or �1, and further whether the
system is topologically trivial or not. In the presence of V, it
is found that the Chern number changes by 1 when the va-
lence and conduction bands cross. By continually changing
the potential period d and potential magnitude V0, we obtain
a phase diagram for the Chern number in Fig. 2 with the
numbers in the boxes indicating the values. We see that in
this system the Chern number is a function of the potential
period d and amplitude V0.

Examination of the evolution of the band structure and
Berry curvature at the transition courses further confirms our
claim. In Fig. 3 we show the first two transitions from C

=0 to 1, and from C=1 to 2. By increasing V0, the band gap
closes and reopens in Figs. 3�a� and 3�b�. Correspondingly,
the Berry curvature peak become sharp, and reverses its
value dramatically, which accounts for the change in the
Chern number. At the corresponding k points, the eigenwave
functions also switch their band indexes quickly. By further
increasing V0, the peak of the Berry curvature splits into two
subpeaks, and the third peak with an opposite sign grows up
while the Chern number remain to be C=1. In the second
transition, the third peaks reverses again just like the first
transition, and the Chern number changes from C=1 to 2.
Therefore accompanied by every “closing and reopening” of
the band gap the Chern number changes by 1.

IV. EDGE STATES AND SPECTRUM

According to the edge-bulk correspondence,23,24 the first
Chern number determines number of the edge states when
the system has an open boundary. We take a strip geometry
that is parallel to the x direction with open boundary condi-
tion along the y direction. We start from a topological trivial
case of ��0 and B�0, and scrutinize its changing in the
band structure when varying the periodic potential V0. In the
absence of the potential V the system is insulating and topo-
logically trivial indicated by a positive band gap. As V0 in-
creases, the conduction bands shift down and valence bands
shift up. Eventually the two bands cross and a band gap
reopens. A pair of edge states appears connecting the valence
and conduction bands as shown in Fig. 4�b�. Detailed analy-
sis shows that the wave functions of these states indeed re-
side on the sample edges only. As V0 goes further up, more
bands cross and more pairs of edge states are formed at dis-
tinct k points as shown in Figs. 4�c� and 4�d�. It is interesting
to observe that the band gap at E=0 always retains a finite
value at certain stages throughout the evolution. We can see
the appearance of the edge states corresponds to the change
in the Chern number from C=0 to C=3 by comparing Figs.
3 and 4. Thus modulation of edge-state numbers is clearly
reflected in the step wise changing of the Chern numbers.

h+ and h− are the time-reversal counterparts of each other.
Each edge state 
�+� in h+ has a counterpart 
�−�=�
�+� in
h− and they form a pair of helical edge states. As a result, the
large Chern number �C�1� indicates multiple pairs of heli-
cal edge states in the system H0 in this periodic potential V.
For a thin film fabricated on the substrate, the top-bottom
symmetry will be broken due to the interface of the thin film
and the substrate. This fact will remove the degeneracy of
the spectra from h+ and h−. An off-diagonal term of structural
inversion asymmetry is added to the model H0 in Eq. �1�,25

�V=VSIA�
0 �0

�0 0 � which connects the up and down blocks
��0 is the 2�2 identity matrix�. Similar physics happens if
the sample breaks the bulk inversion symmetry in quantum
wells.26 In the presence of VSIA, numerical calculation still
demonstrates existence of the edge states in the four-band
model, which is characteristic of QSH phase. Thus this term
does not destroy the QSH phase explicitly.

V. DISCUSSION AND CONCLUSION

Feasibility of experimental realization of this phenom-
enon depends on spin decoherence length in the sample and
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FIG. 4. �Color online� Band structure evolution of a strip geom-
etry in a periodic potential for h+. Strip width 400, d=20, and
� /2=0.03. �a� V=0, C=0; �b� V0=0.3, C=1; �c� V0=0.6, C=2;
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the fabrication of the periodic potential. The spin decoher-
ence length was estimated to be 1–2 �m in the HgTe/CdTe
quantum well4,14 and expected to be longer in a thin film of
Bi2Se3.25 On the periodicity of the modulated electric field,
the sub-100-nm period of SSL fabrications was reported a
decade ago,27 and the 3 nm periodicity for a graphene on
Ru�111� recently.28 For a set of realistic parameters for HgTe/
CdTe quantum well with a normal band gap �=4 meV,3 the
magnitude of the potential with periodicity d=50 nm is cal-
culated to V0=40 meV for the transition of C=0–1 and V0
=110 meV for the transition of C=1–2. We speculate that
the modern techniques of superlattice make this electric-field
modulation possible.

In summary, the band structure of a thin film or quantum
well are folded into the minibands in the reduced BZ by a
periodic potential and can be modulated such that the con-
duction bands shift downward and the valence bands shift

upward. Each process of the band gap closing and reopening
will change the Chern number by 1. As a result the number
of the helical edge states will increase or decrease by 1. This
demonstrates the possibility of the electric-field modulation
of topological orders in the thin-film semiconductors, which
is analogous to the integer quantum Hall effect in a strong
magnetic field. Direction of electrons of the helical edge
states is of interests in quantum information and quantum
processing. Controllable number of the helical edge states
will pave an alternative route for application of edge-state
physics in the future.
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