2,881 research outputs found

    Electromagnetic Lens-focusing Antenna Enabled Massive MIMO: Performance Improvement and Cost Reduction

    Full text link
    Massive multiple-input multiple-output (MIMO) techniques have been recently advanced to tremendously improve the performance of wireless communication networks. However, the use of very large antenna arrays at the base stations (BSs) brings new issues, such as the significantly increased hardware and signal processing costs. In order to reap the enormous gain of massive MIMO and yet reduce its cost to an affordable level, this paper proposes a novel system design by integrating an electromagnetic (EM) lens with the large antenna array, termed the EM-lens enabled MIMO. The EM lens has the capability of focusing the power of an incident wave to a small area of the antenna array, while the location of the focal area varies with the angle of arrival (AoA) of the wave. Therefore, in practical scenarios where the arriving signals from geographically separated users have different AoAs, the EM-lens enabled system provides two new benefits, namely energy focusing and spatial interference rejection. By taking into account the effects of imperfect channel estimation via pilot-assisted training, in this paper we analytically show that the average received signal-to-noise ratio (SNR) in both the single-user and multiuser uplink transmissions can be strictly improved by the EM-lens enabled system. Furthermore, we demonstrate that the proposed design makes it possible to considerably reduce the hardware and signal processing costs with only slight degradations in performance. To this end, two complexity/cost reduction schemes are proposed, which are small-MIMO processing with parallel receiver filtering applied over subgroups of antennas to reduce the computational complexity, and channel covariance based antenna selection to reduce the required number of radio frequency (RF) chains. Numerical results are provided to corroborate our analysis.Comment: 30 pages, 9 figure

    Secure Mobile Computing by Using Convolutional and Capsule Deep Neural Networks

    Get PDF
    Mobile devices are becoming smarter to satisfy modern user\u27s increasing needs better, which is achieved by equipping divers of sensors and integrating the most cutting-edge Deep Learning (DL) techniques. As a sophisticated system, it is often vulnerable to multiple attacks (side-channel attacks, neural backdoor, etc.). This dissertation proposes solutions to maintain the cyber-hygiene of the DL-Based smartphone system by exploring possible vulnerabilities and developing countermeasures. First, I actively explore possible vulnerabilities on the DL-Based smartphone system to develop proactive defense mechanisms. I discover a new side-channel attack on smartphones using the unrestricted magnetic sensor data. I demonstrate that attackers can effectively infer the Apps being used on a smartphone with an accuracy of over 80%, through training a deep Convolutional Neural Networks (CNN). Various signal processing strategies have been studied for feature extractions, including a tempogram based scheme. Moreover, by further exploiting the unrestricted motion sensor to cluster magnetometer data, the sniffing accuracy can increase to as high as 98%. To mitigate such attacks, I propose a noise injection scheme that can effectively reduce the App sniffing accuracy to only 15% and, at the same time, has a negligible effect on benign Apps. On the other hand, I leverage the DL technique to build reactive malware detection schemes. I propose an innovative approach, named CapJack, to detect in-browser malicious cryptocurrency mining activities by using the latest CapsNet technology. To the best of our knowledge, this is the first work to introduce CapsNet to the field of malware detection through system-behavioural analysis. It is particularly useful to detect malicious miners under multitasking environments where multiple applications run simultaneously. Finally, as DL itself is vulnerable to model-based attacks, I proactively explore possible attacks against the DL model. To this end, I discover a new clean label attack, named Invisible Poison, which stealthily and aggressively plants a backdoor in neural networks (NN). It converts a trigger to noise concealed inside regular images for training NN, to plant a backdoor that can be later activated by the trigger. The attack has the following distinct properties. First, it is a black-box attack, requiring zero-knowledge about the target NN model. Second, it employs \invisible poison to achieve stealthiness where the trigger is disguised as \noise that is therefore invisible to human, but at the same time, still remains significant in the feature space and thus is highly effective to poison training data

    Stealth Majorana Zero Mode in a Trilayer Heterostructure MnTe/Bi2Te3/Fe(Te,Se)

    Full text link
    Recent experiment reported the robust zero-energy states with strange properties in a trilayer heterostructure MnTe/Bi2Te3/Fe(Te,Se). Here, we give comprehensive understandings about the magnetic and electronic properties of the heterostructure, and propose ferromagnetic Mn-Bi antisite defects are generated in the topmost sublayer of Bi2Te3 and hidden below the MnTe layer. We further reveal the defect can induce two types of quasiparticles. One is Yu-Shiba-Rusinov state from defect itself, and another is Majorana zero mode from the superconducting phase domain wall induced by the defect. The two types of quasiparticles have very different response to magnetic field, temperature etc. The coexistence and mutual cooperation of both can explain experimental observations. Furthermore, we propose more simple heterostructure with superiority to generate and finely modulate Majorana zero modes.Comment: 6+10 pages,3+8 figure
    • …
    corecore