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ABSTRACT

SECURE MOBILE COMPUTING BY USING CONVOLUTIONAL AND CAPSULE
DEEP NEURAL NETWORKS

Rui Ning
Old Dominion University, 2020

Director: Dr. Hongyi Wu

Mobile devices are becoming smarter to satisfy modern user’s increasing needs better,

which is achieved by equipping divers of sensors and integrating the most cutting-edge Deep

Learning (DL) techniques. As a sophisticated system, it is often vulnerable to multiple

attacks (side-channel attacks, neural backdoor, etc.). This dissertation proposes solutions

to maintain the cyber-hygiene of the DL-Based smartphone system by exploring possible

vulnerabilities and developing countermeasures.

First, I actively explore possible vulnerabilities on the DL-Based smartphone system to

develop proactive defence mechanisms. I discover a new side-channel attack on smartphones

using the unrestricted magnetic sensor data. I demonstrate that attackers can effectively

infer the Apps being used on a smartphone with an accuracy of over 80%, through training a

deep Convolutional Neural Networks (CNN). Various signal processing strategies have been

studied for feature extractions, including a tempogram based scheme. Moreover, by further

exploiting the unrestricted motion sensor to cluster magnetometer data, the sniffing accuracy

can increase to as high as 98%. To mitigate such attacks, I propose a noise injection scheme

that can effectively reduce the App sniffing accuracy to only 15% and, at the same time, has

a negligible effect on benign Apps.

On the other hand, I leverage the DL technique to build reactive malware detection

schemes. I propose an innovative approach, named CapJack, to detect in-browser malicious

cryptocurrency mining activities by using the latest CapsNet technology. To the best of

our knowledge, this is the first work to introduce CapsNet to the field of malware detection



through system-behavioural analysis. It is particularly useful to detect malicious miners

under multitasking environments where multiple applications run simultaneously.

Finally, as DL itself is vulnerable to model-based attacks, I proactively explore possible

attacks against the DL model. To this end, I discover a new clean label attack, named

Invisible Poison, which stealthily and aggressively plants a backdoor in neural networks

(NN). It converts a trigger to noise concealed inside regular images for training NN, to plant

a backdoor that can be later activated by the trigger. The attack has the following distinct

properties. First, it is a black-box attack, requiring zero-knowledge about the target NN

model. Second, it employs “invisible poison” to achieve stealthiness where the trigger is

disguised as “noise” that is therefore invisible to human, but at the same time, still remains

significant in the feature space and thus is highly effective to poison training data.
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CHAPTER 1

INTRODUCTION

Mobile devices have become constant companions in our daily lives. People are not

just using their mobile devices at work and home – they are living on them. People rely

on smartphone applications (Apps) for communication, social networking, entertainment,

banking, shopping, navigation, healthcare, and more. For many people, every day begins

and ends with checking their smartphones. As more and more personal data are stored on

and processed and transmitted by smartphones, they are becoming an increasingly attractive

target for cybercriminals.

The modern mobile devices are becoming “smarter” to satisfy the increasing need of

users. Machine Learning techniques, Deep Learning (DL) specifically, have been adopted for

productivity and smarter decision making. They usually cooperate with a range of integrated

sensors, such as accelerometer, gyroscope, magnetometer, GPS, gravity sensor, barometer,

microphone, ambient light sensor, and proximity sensor, to extract the knowledge of the

current state. As all are resulting in a sophisticated system, it is often vulnerable to multiple

attacks, including side-channel attacks (malicious use of on-device sensors), neural backdoor,

and data poisoning attacks, etc.

1.1 ATTACKS AGAINST DL-BASED SMARTPHONE SYSTEM

Side-channel Attack A range of work has attempted to construct side-channel attacks

to infer app usage on smartphones. Various methods have been leveraged, for instance,

power usage [1], system behaviour [2], and network traffic [3, 4]. In [1, 2], the authors

developed malicious Android Apps to collect system information, such as current, voltage,

network state, CPU and memory usage, from a victim. The collected data were analyzed,
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and machine learning techniques were used to identify the Apps on the victim’s device.

In [3,4], the authors designed learning systems to automatically fingerprint an App using the

encrypted network traffic (e.g., IP, protocol type, length, etc.). However, their approaches

require to either maliciously deploy an additional App [1, 2] or a traffic sniff device [3, 4]

to collect data on the victim’s device. It is also worth to mention that their approaches

perform poorly in scenarios that the Apps have minimal network traffic, or have random

system behaviour caused by multithreading.

In addition, Recent studies introduced several attacks due to the malicious use of mag-

netometer and motion sensors. For instance, a range of work [1, 5, 6] raised the idea of

cyber-vulnerability in 3D printing, where a piece of malicious software can infer the design

files by sniffing magnetometer. Furthermore, two recent works [7, 8] proposed utilizing mo-

tion sensors in smart devices to infer a user’s typed words or passwords. Similarly, Narain

et al. [9, 10] demonstrated that the accelerometer and the gyroscope could be used to infer

car driving routes and fingerprint devices.

Compared with traditional side-channel attacks, which usually require professional tools

to sample side-channel signals, the mobile side-channel signal sniffing can be conducted easily

by leveraging APIs provided by the operating system of mobile devices. In addition, since

the collected signal data can be transferred to the attacker in real-time through the Internet,

the adversary can perform the attack world-widely as long as they are online. However,

the challenging part of the mobile side-channel attack is how to efficiently extract useful

knowledge from the multi-modal signals from sensors with limited accuracy. To this end,

attackers reach out to find a more powerful, efficient, and adaptive tool for feature extraction.

DL-based Model Attack While deep learning is embraced as an important tool for effi-

ciency and productivity, it is becoming an increasingly attractive target for cybercriminals.

For example, adversarial example (AE) [11–14] is one of the most widely studied attacks. It

adds small perturbation to a clean image to fool a target neural network (NN) to misclassify
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an image.

This attack usually requires full knowledge of the target NN model or abundant similarly-

distributed training data to train a substitute NN. Moreover, an AE is narrowly targeted

at individual input samples. Previous studies [15, 16] have shown that a small change in

AE could render it ineffective. For instance, if an AE is interfered with by physical noises

introduced by a display, camera, or viewing angle change, it would fail to trigger the targeted

misclassification [15,17].

Studies have shown a class of more robust attacks by planting a backdoor in NN mod-

els [18,19]. The basic idea is to create a unique pattern and include it in training data. The

trained NN thus contains a backdoor. Whenever the trigger appears in the input image,

it activates the backdoor to misclassify the input to a category targeted by the attacker.

Compared with AE, the backdoor attack is more robust, especially under physical noises.

However, to plant a backdoor, the targeted model must be trained by the attacker using

manipulated training data and then offered to targeted users. This constraint makes the

attack less realistic.

The quest continues with the discovery of clean label attack [20, 21], which still targets

at creating a backdoor, but does not make the strong assumption that the targeted model

must be trained by the attacker. Instead, it aims to poison all or part of the training data

used by the victim in order to plant a backdoor. The key to success in such an attack is to

be stealthy, such that the victim cannot detect that the training data have been poisoned.

To this end, the training data can be constructed by using AE samples.

However, it inherits the limitations of AE as it requires either a white-box [20, 22] or a

substitute NN [21,23]. Another approach is to combine AE with a watermarked “trigger” [20]

to poison the images [23] to strive for a higher transferability over different NNs. In these

approaches, the triggers are, however, visible to human, and thus are likely to be discovered

by alerted users for image collection. Moreover, experiments show that it degrades the

performance of the targeted model.
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1.2 DISSERTATION CONTRIBUTIONS

In this dissertation, I have developed and demonstrated a systematical methodology of

discovering possible vulnerabilities and developing countermeasures on the DL-based smart-

phone system. Though it is not applicable for me to exhaust all the weaknesses and build

corresponding defence mechanisms. The methodology of the demonstrated examples in my

dissertation can still guide and motivate future researches in this field.

1. Proactively discovering side-channel vulnerabilities.

It is crucial to discover new side-channel vulnerabilities before it causes damages. To my

best knowledge, my work is the first that discovers and reports the correlation between

magnetometer readings and LED displays on smartphones. Based on this observation,

I demonstrate a newfound side-channel attack, where the attacker can sniff mobile

Apps through magnetometer data. In particular, I devise deep Convolutional Neural

Networks (CNN) that can be trained to effectively infer the Apps installed on the

smartphone and their usage information. I implement the attack on iPhone 7 Plus and

Samsung Galaxy 7 and carry out extensive experiments, showing that the attack can

achieve an accuracy of 80-90% based on the magnetometer data.

Furthermore, I discover that the orientation data is closely correlated with the magne-

tometer readings. To this end, I use the orientation of the smartphone as an alternative

to train and test the CNN models. The performance is only slightly lower than the

original approach based on magnetometer data. This finding enables even more perva-

sive attacks since the orientation data can be readily obtained by integrating a 4-line

Javascript code in attacker’s websites, and the Javascript can continuously acquire the

orientation data even in the background. Besides showing this newfound side-channel

attack, I also discuss viable methods to mitigate it by injecting a minimal amount of

noise into the magnetometer or orientation data.
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2. Using deep learning technology to build side-channel defense mechanisms.

Deep learning has proven its success in computer vision, but it not trivial to directly

adopt it to our field. This is because the sensor data is spatial and contains rich

time-related information, while the digital image is continuous and time irrelevant.

Therefore, I am exploring possible methods to adopt cutting-edge deep learning tech-

niques into the side-channel attack field seamlessly.

I propose an innovative approach to detect malicious cryptocurrency mining activities

by using the latest CapsNet technology. To the best of my knowledge, this is the first

work to introduce CapsNet to the field of malware detection. It is particularly effective

to detect malicious miners under multitasking environments. Built upon the success of

the CapsNet-based approach, I further develop a two-layer classification system, named

CapJack, which can effectively transform a pre-trained model to detect miners on new

devices. This is intrinsically important to achieve practical usability, given the wide

variety of devices used by victims. The work delivers a well-engineered prototype. The

experiments reveal valuable empirical insights into the design space for miner detection

and the application of CapsNet for detecting malicious mining activities. Experimental

data show the appealing performance of CapJack, with a detection rate of as high as

87% instantly and 99% within a window of 11 seconds.

3. Exploring vulnerabilities of deep learning techniques. As the DL technology

plays as an essential role in my previous works, its robustness becomes crucial. There-

fore, I reach out to explore the vulnerabilities of deep neural networks. I discover a new

clean label attack, named Invisible Poison, which stealthily and aggressively plants a

backdoor in neural networks (NN). It converts a trigger to noise concealed inside reg-

ular images for training NN, to plant a backdoor that can be later activated by the

trigger.
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1.3 OUTLINE OF THE DISSERTATION

This dissertation is organized into the following chapters:

• Chapter 1: Introduction to the problem, existing works, and our approach’s contribu-

tions.

• Chapter 2: We discuss a new found side-channel attack against smartphones and its

countermeasures.

• Chapter 3: We discuss the methodology of introducing CapsNet to the field of malware

detection.

• Chapter 4: We shortly present our current work on discovering vulnerabilities of deep

neural networks and future works.

• Chapter 5: Conclusion.
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CHAPTER 2

DISCOVERING MOBILE SIDE-CHANNEL

VULNERABILITIES: SNIFFING MOBILE APPS IN

MAGNETIC FIELD THROUGH DEEP CONVOLUTIONAL

NEURAL NETWORKS (DEEPMAG)

This chapter reports a new side-channel attack on smartphones using the unrestricted

magnetic sensor data. We demonstrate that attackers can effectively infer the Apps being

used on a smartphone with an accuracy of over 80%, through training a deep Convolutional

Neural Networks (CNN). Various signal processing strategies have been studied for feature

extractions, including a tempogram based scheme. Moreover, by further exploiting the

unrestricted motion sensor to cluster magnetometer data, the sniffing accuracy can increase

to as high as 98%. To mitigate such attacks, we propose a noise injection scheme that can

effectively reduce the App sniffing accuracy to only 15% and at the same time has a negligible

effect on benign Apps.

2.1 PRELIMINARY EXPERIMENTS AND MOTIVATIONS

The quest begins with the observation of a subtle correlation between an LED display

and its surrounding magnetic field. For example, in our first experiment, we display a black

image on a 27 inch LED PC monitor for 20 seconds, followed by a white image for 60

seconds. We repeat the pattern for a number of rounds. In the meantime, an iPhone 7

Plus is placed in front of the monitor about 10cm away to measure the magnetic field. We

observe a noticeable change in the magnetic field while switching between the two images

(see Fig. 1(a)).
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Figure 1. Magnetometer readings on Y-axis. (a) Change of magnetometer reading due
to PC LED display, where the black and magenta waveforms correspond to the black and
white images, respectively. (b) Change of magnetic field due to smartphone LED display
(black and white). (c) Change of magnetic field while the smartphone sequentially displays
white-black-red-blue. The solid orange line in each dashed rectangle box represents the mean
of the signal within the box.
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The above phenomenon motivates us to further explore how the LED display on a smart-

phone would affect its magnetometer readings. To this end, we carry out a similar experiment

by displaying the black and white images on the iPhone 7 Plus while recording the data cap-

tured by the magnetometer on the same phone. Compared with the previous setting, we

expect more stable results since the distance between the LED display and the magnetome-

ter is shorter and their relative orientation is fixed. The experimental data are depicted

in Fig. 1(b), demonstrating significant changes in magnetic field when different images are

displayed on the phone.

Fig. 1(c) further shows the change of magnetometer readings while the smartphone dis-

plays four different colors, white-black-red-blue, in sequence. While it is beyond our scope to

fully model this physical phenomenon, it is largely due to the fact that different bias voltages

are used when LED displays different colors, which accordingly lead to the change of the

magnetic field [24].

The results shown in Fig. 13 demonstrate the correlation between colors on LED display

and surrounding magnetic field. Since different Apps often adopt different graphic designs

that mix different color patterns, we speculate that they also induce different magnetometer

readings. In particular, when one clicks on an App’s icon, a unique welcome-page will be

displayed till the App is fully open. The corresponding changes in magnetic field can be

measured by the integrated magnetometer. Fig. 2 illustrates the averaged magnetometer

readings over the period for opening two popular Apps, i.e., Snapchat and Twitter, on

an iPhone 7 Plus. As can be seen, they differ dramatically on at least one axis (in this

case, Y-axis). This is because Snapchat adopts predominantly a bright yellow color while

Twitter uses blue. We have verified that the above observations are repeatable on different

smartphones and models. More results will be presented in Secs. 2.2-2.4. These preliminary

experimental data indicate that different Apps are likely associated with unique magnetic

signatures. Therefore, if one can acquire magnetometer data, he can potentially infer the

Apps running on a smartphone.
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(a) Screen shots when opening Snapchat and Twitter.
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(b) Magnetometer X-axis readings for Snapchat and Twitter.
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(c) Magnetometer Y-axis readings for Snapchat and Twitter.
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(d) Magnetometer Z-axis readings for Snapchat and Twitter.

Figure 2. Welcome pages and magnetometer readings of popular Apps.

2.2 MAGNETOMETER-BASED APP SNIFFING (MAS)

In this section, we present App sniffing solely based on the readings from magnetometer.

The preliminary observations presented in Sec. 3.1 indicate that different Apps are likely
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to induce different magnetic field. However, it remains a nontrivial problem to identify

the unique magnetic signature for each App and accordingly infer the Apps according to

magnetometer readings. The fundamental challenge lies in the facts that the magnetometer

data exhibit noise and randomness and that the Apps’ graphic designs often incorporate

complex combination of color patterns, rendering simple classification methods infeasible.

To this end, we propose to exploit the powerful deep CNN to classify magnetometer data

and to infer the corresponding Apps.

Input 3x36
CL1 3x34x64

Convolution

64x1x3

CL1 3x32x64

Convolution

64x1x3

Maxpooling

[1 2]

Convolution

64x1x3

Convolution

64x1x3

pool 3x16x64 CL1 3x14x64 CL1 3x12x64 pool 3x6x64

Maxpooling

[1 2]

Dense 128 Softmax

Output (7)

Figure 3. An example of the proposed deep CNN architectures.

2.2.1 DEEP CNN MODELS FOR MAGNETOMETER-BASED APP SNIFF-

ING

Magnetometer data can be recorded when a user opens an App. In our preliminary

exploration, we have considered the seven most commonly used Apps, i.e., Twitter, Snapchat,

Pandora, Netflix, Google Maps, Chase Bank, and HBO. The recording process essentially

collects a sequence of magnetometer samples during the interval from clicking on an App to

the time when the welcome page of the App is fully displayed on the mobile screen. Fig. 2

shows the examples for opening Snapchat and Twitter, respectively. Different phones may

have different sampling rates of their magnetometers. For instance, Samsung Galaxy S7

and iPhone 7 Plus sample their magnetometers at the rate of 20Hz and 100Hz, respectively.

As to be shown later, the sampling rate has negligible impact on the effectiveness of App



12

sniffing.

Since the change of magnetic field is relatively small, we preprocess the raw magnetometer

data by using a de-noising function (e.g., wden available in MATLAB [25]). It decomposes

the signal into wavelets and performs thresholding on wavelets coefficients.

We set the function at the denoise-level 5 with soft thresholding rule for the universal

threshold
√

2 ln (·). Then, we normalize the de-noised data by subtracting its mean and

dividing it by its vector’s norm. Figs. 2(b)-(d) illustrate the normalized magnetometer

readings of Snapchat and Twitter on X, Y, and Z axis. While the figure only shows about

4 seconds, the total recording time is 8.25 seconds including some overhead before and after

the App is opened.

Thus on an iPhone with a sampling rate of 100Hz, each magnetometer data would have

a dimension of 825 × 3. Directly feeding such high dimensional data into the CNN yields

poor results (less than 50% accuracy) because drastic changes over such a large span of 825

sample points may easily overwhelm a neural net’s representational capability. To this end,

we adopt a sliding window approach with a window size of W sample points to slide over

the time series. Each pair of adjacent slices has an overlap of P sample points. For example,

assume W = 36 and P = 31. If we have 100 original data (each with a dimension of 825×3),

they will be converted to 15, 800 sliced data each with a dimension of 36 × 3. The sliced

data are labeled with corresponding Apps for training and testing as to be discussed next.

We have explored several deep CNN architectures to sniff Apps based on magnetometer

data. In contrast to computer vision (that adopts 2D filters for images), the magnetometer

data on smart phone involves 3 channels (x, y, z) and data points along each channel dimen-

sion is a 1D time series. To this end, 1D filter is adopted in the architectures to capture

temporal correlations on each channel. Similar approaches are also found in human activity

recognition [26,27].

Our goal is to demonstrate that an appropriately designed CNN can effectively sniff

frequently used Apps on a mobile phone. The exploration begins with a 3-Layer architecture
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consisting of only one convolutional layer. Based on our observation, the variation of the

Magnetic signal caused by the LED correlation is relatively small. To extract such a minor

change, we select kernel size as 1× 3. Each layer applies Rectified Linear Units (ReLUs) as

the activation functions (taking f(x) = max(0, x)). The features extracted by convolutional

layers are fed into a densely connected layer which connects to the output softmax function.

Although a single convolutional layer is fast for computation, low-level features captured

in the first layer may not generalize well on the entire dataset. To exploit the wealth of

data that an attacker can obtain, we have further investigated several deeper structures

by stacking more convolutional layers together and inserting max pooling layers to reduce

dimensionality. Fig. 3 illustrates an example of such deep CNN structures. For brevity, a

6-layer CNN is denoted as: Conv(64)-Conv(64)-Pool -Conv(64)-Conv(64)-Pool -Dense(128)-

Sfmax. A layer is counted if it has adjustable weighted connections. Each convolutional

layer has 64 filters and the densely connected layer has 128 neurons with ReLU activations.

Maxpooling layer reduces the input dimension by half. As more convolutional layers are

stacked up, the network will be able to extract high-level features and generalize on the

dataset.

To understand the effectiveness of this CNN approach and compare the accuracy of

different CNN architectures, we have carried out a set of preliminary experiments. We

have considered the top-7 most used Apps as discussed earlier (from Twitter to HBO), and

collected a total of 700 raw magnetometer recordings on a number of Samsung Galaxy S7

and iPhone 7 Plus units. They are the flagship smartphones of Samsung and Apple – two

companies that together have a total market share of 72.8% in the US [28]. The CNN

models have been implemented in Tensorflow [29] with batch sizes of 150 and 100 epochs.

For comparison, we have also implemented a baseline 3-layer neural network (NN) model that

has dense connections and a support vector machine (SVM) model using LibSVM [30]. All of

them are trained and tested on a PC with I7-4470 CPU and NVIDIA 1080Ti graphic card. As

discussed earlier, we adopt a sliding window approach to slice each recorded magnetometer
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data. The default parameters are W = 36 and P = 31.

The primary performance metric is the accuracy, i.e., the fraction of correctly recognized

Apps. We utilize 4-fold cross validation (CV) for performance evaluation, where we randomly

divide a dataset to 4 parts and use three parts for training and the remaining part for testing.

This process is repeated four times such that each part is used for testing once. We are also

interested in the running time. For a 6-layer CNN model, the training time for each epoch

is around 4 seconds, and it takes about 100 epochs to achieve converged result.

(a) Feature learned by Conv 1 (b) Feature learned by Conv 2

(c) Feature learned by Conv 3 (d) Feature learned by Conv 4

(e) Feature learned by Dense Layer

(f) Feature learned at Output Layer (Prediction)

Figure 4. Visualization of features learned by the deep CNN.

As shown in Table 1, the 6-Layer CNN has the highest accuracy. At the same time,

we also observe that the accuracy is not sensitive to different CNN architectures. All of

them perform significantly better than SVM and NN. Thus, an attacker can utilize any
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Table 1. Performance Comparison of Different CNN Models.

Machine Learning Model Accuracy

SVM 39%
SVM with Sliced Input Data 42%

3-Layer NN 43%
3-Layer NN with Sliced Input Data 46%

3-Layer CNN with Sliced Input Data 82%
5-Layer CNN with Sliced Input Data 83%
6-Layer CNN with Sliced Input Data 83%
7-Layer CNN with Sliced Input Data 83%
8-Layer CNN with Sliced Input Data 83%

general-purpose CNN to construct the attack without the need to fine-tune the CNN model.

Fig. 4 visualizes the features learned on input signal captured by the 4 convolutional

layers, dense layer and finally the output layer. Each convolutional layer trains a number

of filters to match similar spatial patterns in the input signal in order to minimize the cost

function. Each learned feature is displayed as 3× 36 (size of the signal input) and arranged

in a stitched 16 × 4 = 64 array for each layer. Here, 3 is the number of channels and 36

is the sliding window size. Since the features learned from the signals are rather flat, we

remove the margins between neighboring features for better visualization. From Fig. 4(a),

the highlighted features (boxed) show mosaic patterns that are activated from the raw input

signal. Subsequent layers are more abstract and such low-level, mosaic patterns start to

disappear from the 3rd layer. Although the high level features learned by the CNN are not

visually explainable at this point [31], they jointly represent unique identifications for each

class of Apps on the high level. The learned features from convolutional layers are fed into

the dense layer that classifies the outputs into 7 classes. The output layer is a generalization

of all the features learned by the network that average over the data points in each class.

This is consistent with the reasoning in [32]. In contrast, SVM and NN fail to effectively

identify different Apps. It may be due to the fact that the time series from different Apps
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are overlapped and these models lack the automatic feature learning capabilities.

We further compare the performances by tuning different hyperparameters. The experi-

mental results (omitted here due to space limit) show that the model is not sensitive to the

batch size. The slice window with W = 36 and P = 31 always yields the highest accuracy.

We also observe that the errors are generally evenly distributed unless two Apps are very

similar in colors and patterns. As shown in Table 2, the confusion between HBO and Net-

flix is relatively high, i.e., most errors of Netflix are misclassified into HBO, and vice versa,

because their colors are both predominantly black. This is also reflected in Fig. 4(f), where

the 1st and 4th classes, which respectively correspond to HBO and Netflix, show similarities.

Table 2. Confusion Matrix (under 6-Layer CNN with Sliced Input).

HBO Chase Google Maps Netflix Pandora Snapchat Twitter
HBO 70.13% 1.71% 0.27% 14.92% 2.85% 1.34% 1.41%
Chase 3.78% 85.54% 3.26% 1.09% 1.12% 2.26% 2.32%

Google Maps 3.33% 2.1% 86.53% 1.46% 1.23% 1.34% 1.43%
Netflix 16.56% 1.26% 3.64% 72.79% 1.48% 1% 0.37%

Pandora 0.7% 3.52% 0.68% 2.45% 89.12% 1.19% 3.02%
Snapchat 3.14% 2.24% 1.17% 2.94% 2.86% 91.81% 0.12%
Twitter 2.36% 3.63% 4.45% 4.35% 1.34% 1.06% 91.33%

2.2.2 ORIENTATION-BASED APP SNIFFING

The previous subsection has shown a possible approach to sniff Apps on a mobile phone

based on magnetometer data. The accuracy is about 0.84. We will introduce enhanced

schemes which achieve a higher accuracy of close to 1 in the next section. But before that,

we would like to discuss how an attacker can obtain sensory data from a user’s smartphone.

By default, any App on a smartphone can access magnetometer without user permission.

So the most straightforward approach is to embed a small piece of code in an benign App

to report magnetometer data to the attacker. However, not all mobile users would install
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such App. Toward this end, we have further considered a web-based method, where the

attackers can acquire sensor data by simply integrating a small (4 line) Javascript code in

their webpage. When a smartphone browses the webpage, the Javascript can read a range

of sensory data such as gyroscope and accelerometer that we will use later. However, it can

not attain direct access to the magnetometer of the mobile devices.

function deviceOrientationHandler(eventData) {

var ori_gamma = eventData.gamma;

var ori_beta = eventData.beta;

var ori_alpha = eventData.alpha;

}

Nevertheless, our investigation reveals that the orientation of the devices can be sniffed

using the web-based method. Furthermore, the orientation is closely correlated with the

magnetometer data as shown by comparing Fig. 1(c) and Fig. 5. As a matter of fact, the

primary use of magnetometer data on the smartphone is to calculate the device’s orientation

in conjunction with the accelerometer. Based on this interesting observation, we use the

orientation of the device as an alternative to train and test the CNN model. The perfor-

mance (i.e., recognition accuracy) is only slightly lower than the original approach based on

magnetometer data. Details results will be discussed in Sec. 2.4 (see Table 5 and related

discussions).
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Figure 5. Change of orientation data while the smartphone sequentially displays four
different colors, white-black-red-blue.

2.2.3 MAS IN TIME-FREQUENCY REPRESENTATION

In the above discussion, we have demonstrated a side channel attack, i.e., MAS, where

the magnetometer data on a smartphone are exploitd by the attacker to infer the Apps

opened by the mobile user. The attack is implemented by using magnetic sigals in time

domain, achiving an accuracy of about 84%. Next, we further demonstrate the exploitation

of frequency domain signals that can potentially lanuch a more effective attack.

The frequency domain has been widely utlized in modern signal processing. In our case,

since the magnetic signal varies along the time domain, we need to consider the time and

frequency domain simultaneously, natureally leading to the use of spectrogram – a graph

of the spectrum of frequencies of a signal as they vary with time. The spectrogram is an

accurate representation of audio signal since human hearing is based on real-time spectrogram

encoded by ear. It has been extensively utilized in audio signal processing [33, 34]. Fig. 6

shows two examples of the spectrogram graph of the magnetic sensor readings while openning

HBO and Google Maps, respectively.

A naive approach is to directly replace the time domain signals by spectrogram, and
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(a) Spectrogram of HBO.
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(b) Spectrogram of Google Maps.

Figure 6. Examples of Spectrogram.

then train CNN models based on the input of spectrogram of magnetic sensor readings. The

testing results are shows in Table 3. The performance of the CNN models with spectrogram

input is slightly higher than the CNN models with raw magnetic time domain signals (see

Table 9), but significant lower than the MAS with slicing, which is around 84%. The poor

performance is not unexpected, because the frequency of the magnetic sensor reading ranges

widely from 2 to 10 Hz, leaving the majority area of the spectrogram graph blank. Therefore,

the differences between spectrogram graphs are largely concentrated in a very small area
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which leads to confusion and misclassification of the CNN model. We have conducted a

similar experiment by limiting the maximum frequency to 10Hz, in particular, to filter out

the un-needed frequencies. However, the subtle change of the magnetic sensor cause by

LED display still cannot be efficiently captured by the spectrogram which leads to non-

differentiable images. To this end, we have explored an alternative approach based on

Tempogram.

Tempogram [35] is initially developed as a state distribution graph for music signals. It

was originally designed to extract local tempo and beat information from audio recordings.

In our case, since the subtle change of the magnetic signal caused by the LED screen is similar

to the beats in audio signal, we expect the tempogram graph of the original magnetic signal

can better extract the features of the magnetic signal’s subtle changes. Fig. 7 shows the

raw magnetic sensor data and its corresponding tempogram graph. Specifically, we convert

a 1-D sensor reading to a 2-D graph with patterns which is easier for CNN to recognize.

Since CNN has proven success in image recognition, we expect this will lead to improved

performance.

Similar to the earlier discussions, a deep CNN is devised and trained by using the tem-

pogram graphs as inputs. We have conducted a series of experiments. As shown in Table. 3,

the recognition accuracy of CNN using tempogram is improved to 90% which is dramati-

cally higher than the raw magnetic data and spectrogram. It is also higher than the slicing

approach which is 84% (see Table 9). In the meantime, it decreases the size of training

dataset by 90% in comparison with the slicing approach, and accordingly reduce the total

computation time significantly.

2.3 MOTION SENSOR-ASSISTED MAS WITH TEMPOGRAM

In the previous section, we have demonstrated a side channel attack, i.e., MAS, where

the attacker sniffs the magnetometer data on a smartphone and accordingly infers the Apps

opened by the mobile user. The accuracy of such inference can be 90%. In this section, we
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(c) Tempogram of Google Maps.

Figure 7. Magnetic reading and tempogram.
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Table 3. Performance Comparison of Different CNN Models with Tempogram.

Machine Learning Model Accuracy

3-Layer CNN 47%
5-Layer CNN 48%

3-Layer CNN with Spectrogram 51%
5-Layer CNN with Spectrogram 51%
3-Layer CNN with Tempogram 87%
5-Layer CNN with Tempogram 87%
6-Layer CNN with Tempogram 90%
7-Layer CNN with Tempogram 89%
8-Layer CNN with Tempogram 90%

show that the attack can be worse, i.e., the attacker can achieve even higher accuracy, if he

exploits motion sensor data.

Briefly, on a given smartphone, the locations of the Apps are generally fixed during the

time window when the attacker sniff sensor data (e.g., ranging from a few hours to a few

days). Suppose the mobile user clicked on Chase App 20 times during the period. If the 20

magnetometer or orientation data are fed into the CNN model introduced in Sec. 2.2, about

four of them would be classified incorrectly to some other Apps. However, if the attacker is

able to recognize that the 20 clicks are all at the same location on the screen, then he can

put them into a cluster and feed the cluster of magnetometer data to the CNN model. The

vast majority of them (90% in average) should be recognized correctly as Chase. Since the

cluster of clicks are from the same location, they should be the same App.1 Therefore, the

attacker can conclude that all 20 clicks are Chase. This approach is effective because, as to

be shown next, such clustering can be achieved with high accuracy (nearly 100%) by using

motion sensor data on the phone.

1We have assumed that the most frequently used Apps are on the home page. The scenarios with multiple
pages and groups will be investigated in our future research.



23

0 0.2 0.4 0.6 0.8 1

Time (second)

-0.4

-0.2

0

0.2

0.4

R
o

ta
ti
o

n
 R

a
te

Gyroscope X

Top Left

Bottom Left

0 0.2 0.4 0.6 0.8 1

Time (second)

-0.4

-0.2

0

0.2

0.4

0.6

R
o

ta
ti
o

n
 R

a
te

Gyroscope Y

Top Left

Bottom Left

0 0.2 0.4 0.6 0.8 1

Time (second)

-0.02

-0.01

0

0.01

0.02

0.03

R
o

ta
ti
o

n
 R

a
te

Gyroscope Z

Top Left

Bottom Left

(a) (b) (c)

Figure 8. Comparison of gyroscope data on X, Y, and Z axis while clicking on top-left and
bottom-left of the screen.

2.3.1 CLUSTERING BASED ON MOTION SENSOR DATA

Nowadays, most mobile operating systems place their App icons in a fixed grid layout. For

instance, iPhone 7 plus has a 4x7 layout and Samsung S7 uses a 4x5 grid. When a user clicks

on different spots on the touch screen, the smartphone has a small rotation and/or vibration

that can be captured by the 3-axis gyroscope and accelerometer. Similar to the discussion on

magnetometer, different phones sample their motion sensors at different frequencies: 100 Hz

on iPhone and 50 Hz on Samsung Galaxy. Fig. 8 illustrates the 3-axis gyroscope data while

clicking on the top-left and bottom-left on an iPhone’s screen. As can be seen, the gyroscope

waveforms differ on all three axes, especially the X and Z axes. Several previous studies have

shown the use of motion sensors to infer the touches on a smartphone screen [36].

Motion Model
Magnetic 

Model
Learn Private 

Usage Patterns

Unlabeled Clusters
1
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n

Labeled Clusters (Apps)

Twitter
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Gmail

Sensor Data

Clusters of 
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Figure 9. The overall procedure of the motion sensor-assisted MAS.
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The attacker can build a training data set for each popular smartphone model and feed

the training data to CNN to create a motion classifier for this type of smartphone. Note

that, we cannot mix the training data of iPhone and Samsung phone since their layout are

different. Again, various CNN architectures and hyperparameters are explored, and finally

we adopt a 4-layer CNN model with the following setting in our experiments: Conv(64)-

Conv(64)-Pool -Dense(128)-Dropput(0.5)-Sfmax.

As discussed earlier, motion sensor (including accelerometer and gyroscope) data are

freely accessible by Apps or web-embedded Javascript. For training purpose, the attacker

can easily experiment on different phones to build training data sets. For example, given

a type of phone, the attacker can click on every grid points for a number of times, collect

motion sensor data, and label each data with the corresponding grid point. The 3-axis

gyroscope data and accelerometer data are combined together. A click lasts about 1 second.

So, each data has a dimension of 6 × 100 on iPhone since its sampling rate is 100 Hz, or

6× 50 on Samsung S7 that samples at 50 per second.

The CNN models are trained offline. Once they are ready, the attacker can acquire

motion sensor data from mobile users either via Apps installed on the users’ phones or when

the mobile users browse the attacker’s websites embedded with his Javascript as we discussed

earlier. The data from each user are fed into the selected CNN model that matches the user’s

phone. If the type of phone is unknown, the attacker can always try different CNN models

and choose the one that yields the most reasonable result. Thus, the attacker can label each

click with a grid position on the screen, and accordingly group all clicks with the same label

into a cluster.

For example, in our preliminary experiment, we have collected gyroscope and accelerome-

ter data when clicking 100 times on each spot of an iPhone 7 Plus’s screen. The experiments

have been repeated by two people using both right and left hands. In total, dataset contains

2× 2× 100× 4× 7 = 11200 data samples and each data sample has a dimension of 6× 100.

Again, 4-fold cross validation is adopted.
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Table 4. Performances of clustering based on Motion Sensors.

No. of Grids 4 8 12 16 20 24 28
Accuracy 100% 100% 99% 99% 98% 98% 98%

Table 4 shows the clustering results. When we only consider four possible positions (at

the four corners of the screen), the accuracy is perfectly 1.0. With the increase of grid points,

the accuracy decreases slightly but is still maintained stable around 98%. With such high

accuracy, the attacker can effectively group the clicks into clusters and consider all clicks in

the same cluster to be associated with the same App.

2.3.2 MOTION SENSOR-ENHANCED ATTACK

Based on the above findings, we now combine the clustering scheme (enabled by motion

sensors) and the App classification based on magnetometer or orientation data. The overall

procedure of the motion sensor-assisted MAS is illustrated in Fig. 9.

Assume that a smartphone has visited the attacker’s website embedded with the afore-

mentioned Javascript. Since the Javascript has free access to accelerometer, gyroscope and

orientation, the attacker can continuously eavesdrop such sensor data. Note that, even the

webpage is in the background, the Javascript can still acquire data. Of course, the attacker

can also try to camouflage codes in seemingly benign Apps, given the behavior of accessing

the sensor data is fairly common.

The hacker continuously collects sensor data for a desired period (usually for several hours

or days), and then performs a straightforward preprocessing to identify the clicks on the

screen and format corresponding motion data and tempogram of magnetic (or orientation)

data as follows:
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click1 motion1 tempogram of mag1 time stamp1

click2 motion2 tempogram of mag2 time stamp2
...

...
...

...

clickn motionn tempogram of magn time stampn


Each row represents one data comprising a click ID, corresponding motion sensor record-

ing, magnetic or orientation recording, and other information such as the time stamp. The

attacker first uses the 4-layer motion CNN model to classify each click (i.e., each row of the

dataset) into a cluster and label it with the corresponding grid ID. The maximum number

of clusters equals to the number of grids on the mobile screen. Note that, all clicks in the

same cluster are from the same grid location and thus should be the same App. As shown

in Table 4, this step is very accurate.

Next, the attacker feeds a cluster of tempogram of magnetic (or orientation) data with

the same grid ID to the 6-layer tempogram-magnetic CNN model. Over 80% of them are

expected to be classified correctly, according to the accuracy presented in Table I. Because

they all belong to the same App, a majority vote can effectively determine the App for the

entire cluster.

As a result, the attacker can infer what Apps have been installed on the user’s mobile

device, how frequently they are used, and when they are opened. In other words, the attacker

can track the users’ habits of App usage. The attack can become even worse. For example, if

the attacker has identified a bank App, it is not too hard to capture the motion sensors while

the user types username and password. If the keyboard is static, the attacker can obtain the

password by using a similar approach as discussed above and access the bank account.

2.4 EXPERIMENTAL EVALUATION

We have used iPhone 7 Plus and Samsung Galaxy 7 to implement and demonstrate the

attacks. In this section, we present our experiments and results.
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2.4.1 SYSTEM SETUP

To collect motion sensor training data, we have considered iPhone 7 Plus and Samsung

S7 separately, since they have different App layouts: 4 × 7 and 4 × 5. For each grid point

in a layout, we have collected 400 samples. The corresponding dataset size for each model

is 400× 4× 7 and 400× 4× 5.

To recognize Apps, we have considered both magnetometer and orientation data. As

discussed before, the latter is desired because it can be accessed by Javascript embedded

in the attacker’s website. To create the training dataset, we have considered top 15 most

used Apps. We open each App 100 times and record the corresponding magnetometer and

orientation data.

All CNN models are implemented in Tensorflow [29]. The training is done offline and

the training data can be easily obtained by the attacker himself. On the other hand, it is

trickier to collect sensor data of the victims. To this end, we have developed a mobile web-

page embedded with a sensor data collection Javascript (for gyroscope, accelerometer, and

orientation data) and a sensor data collection App on both iOS and Android (for gyroscope,

accelerometer, and magnetometer data). We run the experiment for one day to collect data

from users. Some clicks are to open Apps while others happen in the Apps. We differentiate

them by detecting the pressing of the home button on iPhone or Samsung phones. We only

process the sensor data of the clicks after pressing home button. Note that the attacker is

not necessary to process all clicks. As long as he can collect enough number of useful sensor

data, he can achieve his goal of sniffing users’ Apps and tracking their usage.

We have shown some initial experimental results in Sec. 2.2, assuming only magnetometer

data are sniffed to infer Apps. More results are presented here by considering different num-

ber of Apps and different MAS approaches. In the following discussion, “Magnetic Model”

denotes the baseline method where only the tempogram of magnetometer data are used

for training and testing; likewise, “Orientation Model” means the tempogram of orientation
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data are used for training and testing; “+ Motion” indicates motion sensor data are also

employed by following the procedure presented in Fig. 9.

We have also experimented on various devices. “Single Device” denotes the experimental

setting where training and testing are carried out based on the data from a single device;

“Cross Device” indicates the experiments conducted in a way that training is based on the

data from a device, while testing is on a different device but of the same type (e.g., both

devices are iPhone 7 Plus or both are Samsung Galaxy 7); “Cross Model” shows the results

where training is based on the data from a device, but testing is on a different device of the

different type; finally, “Cross Model Mix” means the setting where we mix data from different

devices in different models for both training and testing. Note that, the sensors’ sampling

rates on iPhone 7 Plus and Samsung Galaxy 7 are different. So, under “Cross Model Mix”,

the training and testing datasets include data sampled at different rates. “+Downsampling”

and “+Upsampling” are the signal processing schemes to decrease the sampling rate on

iPhone 7 Plus or increase the sampling rate of Samsung Galaxy 7 to keep them consistent.

2.4.2 EXPERIMENTAL RESULTS

As can be seen in Table 5, the accuracy generally decreases when more Apps are consid-

ered. When there are more Apps, their feature distances become shorter, thus resulting in

higher errors in CNN classification. For a given number of Apps, the accuracy is the lowest

under “Magnetic Model (Cross Model)”. This is because different smartphone models (espe-

cially different manufacturers) often use different types of magnetometers. Therefore, if we

train the CNNs based on data from iPhone 7 Plus, but test them on Samsung Galaxy 7, the

performance is naturally low. However, if training and testing are both based on mixed data

from different device models, the performance degradation becomes negligible (see “Magnetic

Model (Cross Model Mix)”). It is straightforward for an attacker to collect data from various

popular phones for training purpose. In addition, “Upsampling” and “Downsampling” do

not significantly improve the performance. The CNN model is not sensitive to the variance
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Figure 10. (a) Noised vs. original magnetic data. (b) E-compass data based on noised
and original magnetometer, where the noise is at the level of 8 µT. The resulting error of
e-compass reading is only 0.2° in average. (c) MAS accuracy under different noise amplitude.

of sampling rate.

Comparing “Magnetic Model (Cross Model Mix)” and “Orientation Model (Cross Model

Mix)”, the latter’s accuracy is only lower than the former by 4−6%. As discussed in Sec. 2.2,
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Table 5. Performance Comparison of MAS Approaches.

Number of Apps 3 7 11 15
Magnetic Model (Single Device) 93% 90% 86% 84%
Magnetic Model (Cross Device) 91% 87% 84% 82%
Magnetic Model (Cross Model) 72% 68% 62% 59%

Magnetic Model (Cross Model Mix) 91% 87% 84% 81%
Magnetic Model (Cross Model Mix) + Downsampling 91% 87% 84% 81%

Magnetic Model (Cross Model Mix) + Upsampling 91% 88% 83% 81%
Orientation Model (Cross Model Mix) 84% 80% 79% 74%

Magnetic Model (Cross Model Mix) + Motion 99% 98% 98% 97%
Orientation Model (Cross Model Mix) + Motion 98% 98% 98% 98%

orientation is highly correlated with magnetometer data. The use of orientation makes the

attack much easier, given that it can be obtained by a Javascript embedded in the attacker’s

webpage.

When motion sensor-assisted MAS is employed, the accuracy becomes as high as 98%,

and the difference between magnetometer and orientation data are fading away. This is

because the difference in their accuracy does not affect the majority vote.

In addition, large electronic devices, for example, refrigerators, may generate interference

on the magnetic field. To this end, we have carried out experiments when the smartphone is

placed at different distances to a refrigerator. As shown in Table 6, the impact is insignificant.

This is because the interference is a constant and thus cancelled out after normalization.

2.5 DEFENSE MECHANISM

In this section, we discuss viable methods to mitigate the MAS attack. The first approach

is to restrict the permission to access magnetic, orientation and motion sensors. With this

method, a system notification will be popped up when an APP or Javascript requests access

to those sensor data, alerting the users. Unfortunately, despite a potential threat, users may

still obliviously permit such access.
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Table 6. Accuracy under Magnetic Interferences.

Distance to Refrigerator (cm) 25 50 100
Magnetic Model (Cross Model Mix) + Motion 97% 97% 98%

Orientation Model (Cross Model Mix) + Motion 98% 97% 98%

A more transparent method is noise injection that perturbs magnetic sensor output. Since

the change of magnetic field caused by LED is relatively small, a minor Gaussian noises can

be introduced into the magnetometer or orientation data to mitigate the attack. An example

of such noise is illustrated in Fig. 10(a). It has minimum impact on normal applications. For

example, the e-compass uses magnetometer data to determine how many degrees the phone’s

front deviates from the true North. Its results based on noised and original magnetometer

signals are shown in Fig. 10(b), with the mean error of only 0.2°. For most applications,

such small errors do not substantially affect their functionality.

On the other hand, the noise will significantly affect the accuracy of MAS. For instance,

we generate a Gaussian noises at different levels (from 2− 10 µT) and observe their impact

on MAS accuracy.

As shown in Figure. 10(c), the accuracy of the magnetic model drops to 15% when the

average amplitude of noise is 10 µT. Similarly the accuracy of orientation model degrades

significantly with the increase of noise level. Under the motion sensors-assisted MAS which

exploits motion sensor data for clustering, it is even more interesting to observe the sharp

accuracy decrease when the noise level exceeds 5 µT. In this case, the majority vote is likely

wrong, thus the entire cluster is classified incorrectly. One possible attack against our defense

mechanism is re-training in the presence of the noise. However, once the injected noise is

around the same level of the magnetic signal, re-training cannot learn useful information

from the output.



32

2.6 CHAPTER SUMMARY

We have observed the subtle correlation between an LED display and its surrounding

magnetic field. We have further demonstrated a new side-channel attack to smartphones by

exploiting this correlation, where the attacker can sniff mobile Apps by analyzing magne-

tometer or orientation data along with motion sensor data using deep learning techniques.

We have conducted extensive experiments on both iPhone 7 Plus and Samsung Galaxy 7 un-

der different scenarios. Our experiments have demonstrated that the App sniffing accuracy

is as high as 98%. At last, we have proposed a noise injection scheme to effectively mitigate

such attacks.

2.6.1 DISCUSSION

Our approach achieves a 98% success rate when the users are stationary and can be widely

deployed to sniff millions of user by setting up and hijacking multiple websites. While users

are moving, the readings of magnetometer and motion sensors can vary drastically. As the

change of the magnetic field caused by LED is relatively small, the success rate of MAS

may be low under human movements. However, MAS is able to continuously sniff users

once it is set up. For frequently used Apps, we expect there are plenty of opportunities that

users would launch Apps both at moving and being stationary. As long as the users launch

the Apps while being stationary, MAS can accurately sniff the Apps. This is particularly

effective if an attacker wants to steal credentials such as online banking accounts. Certainly,

improving MAS’s performance under human movements is an interesting problem for future

direction. Several studies [26, 27] showed that sensor readings are closely correlated with

different human activities. For instance, stepping causes a repeatable pattern on motion

sensors and magnetometer readings. Hence, the attacker may detect human activity at first

and then tries to cancel out the drastic change caused by the human activity. This will be

one of our future directions.
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Our approach delivers a relatively lower recognition rate on Apps with similar colors and

patterns. To address this problem, one possible solution is to extend the detection time

window to obtain more unique features from those Apps. Furthermore, since users tend to

behave uniquely (type, swipe, and pinch) in different Apps, the attacker may also leverage

motion sensor readings to enhance the recognition rate.

It is also worth mentioning that the nearby large electronic devices may interfere the

magnetometer reading. When users are stationary to the nearby devices, the interference

remains constant, which may be canceled out by the normalization of data preprocessing.

We will explore a better solution when users are moving around large electronic devices in

our future study.
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CHAPTER 3

BUILDING SIDE-CHANNEL DEFENSE MECHANISMS:

CAPTURE IN-BROWSER CRYPTO-JACKING BY DEEP

CAPSULE NETWORK THROUGH BEHAVIORAL ANALYSIS

(CAPJACK)

This chapter proposes an innovative approach, named CapJack, to detect in-browser

malicious cryptocurrency mining activities by using the latest CapsNet technology. To the

best of our knowledge, this is the first work to introduce CapsNet to the field of malware

detection through system behavioral analysis. It is particularly effective to detect malicious

miners under multitasking environments where multiple applications run simultaneously.

Experimental data show appealing performance of CapJack, with a detection rate of as high

as 87% instantly and 99% within a window of 11 seconds.

3.1 BACKGROUND AND MOTIVATIONS

Cryptocurrencies have gained global attention since 2017 due to the sharp surge in their

exchange prices. Amid a debate on whether it is a “tulip bubble” [37] or “future economy”

[38], the price of bitcoin peaked at $20,000 in Jan. 2018 [39], a stunning 20-fold increase

within 12 months. The fever also spreads to other alternative coins (i.e., altcoins). According

to [39], the market valuation of cryptocurrency hit 1 trillion USD in 2018. As a critical link

of the value chain, transactions rely on the underlying blockchain technology called mining.

It defines a series of processes to add transaction records to the public ledger, confirm

transactions in a trustful manner and reward the participants (called miners) some “tips”

for their efforts [40]. For example, bitcoin adopts the proof-of-work principle to ensure the



35

information was difficult to make by solving a series of hash functions [40]. Due to the

high cost of hardware and maintenance, businesses have been investing in cloud mining to

concentrate hashpower (CPU/GPU/ASIC miners) and lease them through contracts [41].

As opposed to those centralized hashpower, if one could distribute the mining compu-

tation through hundreds of thousands devices (including datacenters, PCs, laptops, smart-

phones, and IoTs), it would be a lucrative business opportunity. As nefarious as it sounds,

cybercriminals also think along the same line to hijack the victims’ devices for mining via

crypto-malwares. Different from bitcoin, which requires GPU/ASIC for mining, many alt-

coins such as Monero can be mined effectively by CPU [39]. The growing number of devices

(both computers and embedded devices) connected to the Internet have been turned into

their preys. The damage would have significant financial impact on personal and business

infrastructure by causing system slowdown, reducing hardware lifespan and driving up the

electric bill. Due to the anonymous nature of cryptocurrency, these malicious activities are

difficult to trace. As demonstrated in Fig. 11, hackers can implant a segment of javascript

to use the victim’s device to mine cyrptocurrency without being noticed by the victim. Due

to their stealthy and immediately lucrative nature, mining malware had spiked by 629% in

the first quarter of 2018 as reported by McAfee [42].

Figure 11. Procedure of crypto-jacking and profit chain.

Malware detection relies on the analysis of static signatures and dynamic behaviors [43].

Static analysis usually reverses the program to discover malicious pieces in the binaries such
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as API calls, file manifest, domain name and permissions. To block cryptominers, browser

extensions like No Coin [44] and MinerBlock [45] use static method to detect mining scripts

and blacklist the malicious sites. However, as those signature scripts can be easily obfuscated

or changed, static analysis falls short to detect new/emerging patterns of crypto-malware.

Dynamic analysis monitors system behaviors such as network activities because malware

tends to use specialized procedures for communication. Since crypto-malware should inter-

mittently connect to the mining pool, security analyst has been trying to find these network

signatures through protocols, packets, traffic intervals, domain names, etc. However, it is

challenging to differentiate the crypto-malware traffic among other types of communications

since the messages are short and the malware writers can adopt a variety of obfuscation

methods to blend them into normal traffic. Thus, it is rather difficult to create firewall rules

to block those miners.

Although scripts and network signatures alone can be obfuscated, mining malware cannot

escape from using a combination of computational and communication resources. To this

end, this research aims to develop effective solutions to detecting mining malware based on

system behaviors. We focus on a popular javascript offered by Coinhive [39], which mines a

cryptocurrency called Monero using CPU hashpower and can be implanted into any website.

Coinhive is the most prevalent malware online today, which holds the 1st place in Check

Point’s Top 10 Most Wanted Malware Index, with a global reach of 16 percent in April

2018 [39].

Our quest begins at a few naive approaches and ends with a highly efficient and accurate

scheme based on the latest Capsule Network technology. First, we perform basic static

and dynamic analysis to detect crypto mining using online virus/malicious scripts scanner

and abnormal resource utilization. However, it turns out that these methods have high

miss detection rate. Our exploration also leads to a more sophisticated mechanism based on

Convolutional Neural Network (CNN) [46], which is a state-of-the-art deep learning algorithm

to extract features from data. While it yields high detection rate for a single program, the
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performance deteriorates sharply when multiple programs are mixed – a scenario that is very

common in practice since users tend to multitask by launching different programs.

The observations and lessons learnt from the preliminary exploration motivate us to adopt

the latest Capsule Network (CapsNet). It is a machine learning system proposed recently by

Hinton et. al. [47] to more closely mimic biological neural organization. The design is moti-

vated by the importance of preserving hierarchical pose relationships between object parts

in order to achieve correct classification and object recognition. To this end, CapsNet adds

structures called capsules to a convolutional neural network and employs dynamic routing to

connect capsules such that relative relationships between objects can be represented numer-

ically as a pose matrix. Among other benefits, it can effectively recognize multiple objects

even if they overlap. As demonstrated in the seminal work [47], the overlapping digits (see

Fig. 12 for example) can now be recognized, which is unattainable by CNN.

(a) (b)

Figure 12. CapsNet can effectively recognize overlapping digits. (a) 0 overlaps with 1;
CapsNet output: (0, 1). (b) 7 overlaps with 8; CapsNet output: (7, 8).

Thus, we extend the original architecture of Capsule Network to detect crypto-jacking in

a multi-task environment.

The rest of the chapter is organized as follows. Sec. 3.2 summarizes the preliminary

explorations. Sec. 3.3 introduces the proposed scheme based on CapsNet. Sec. 3.4 presents

the experimental results. Finally, Sec. 3.5 concludes the chapter.
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Figure 13. (a) Miner hiding in browser processes. (b) CPU usage of three individual
applications: Game, Miner, and Video. (c) CPU usage of mixed applications.

3.2 PRELIMINARY

3.2.1 THREAT MODEL

Web browsers are vulnerable to malicious mining scripts and their presence is difficult

to detect. A hacker can create a mining instance within 10 lines of javascript with his

CoinHive site key. Like many third-party scripts, they perform tasks in the background

threads without user knowledge or permission by creating a Worker object. The hacker can

also define the number of CPU threads (number of cores on the victim’s machine) and throttle

(fraction of time that threads are idle), or set threads and throttle to a smaller number to

avoid detection of system slowdown. Even after the user close the browser, the attacker can

still launch a hidden window under the windows taskbar to continue mining. Miners rely

on WebSockets to open an interactive communication session between the user’s browser

and a server. The hacker could set up several WebSocket servers to connect their miners
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through the standard Stratum protocol [48] or even encrypted traffic with SSL support (from

Monero v9.7), that makes the network signature difficult to be detected. In this chapter, the

threat model assumes the hacker has all these capabilities to achieve stealthy and effective

crypto-jacking of the victim’s machine.

3.2.2 SYSTEM FEATURES

Feature selection is critical to malware behavioral analysis. Since in-browser mining

scripts do not attempt to inject malicious code or infect system files, it would be ineffective

to use traditional features such as API calls, DLL access, and file system registry activities.

Nevertheless, we discover mining is associated with a few essential features as outlined below.

• CPU Utilization. It indicates the sum of work handled by the CPU. Monero mining

uses AES-based hash called Cryptonight algorithm [49] that efficiently utilize CPU but

not GPU/FPGA/ASIC.

• Memory. It adopts a scratchpad with a size of the per-core L3 cache on CPUs. There-

fore, the memory consumption is typically the number of threads times the L3 cache

(about 2 MB on Intel CPUs).

• Disk Read/Write. It may take intensive disk read/write during blockchain synchro-

nization process, which happens periodically during the mining process.

• Network Interface. Monero uses the Stratum protocol to communicate with the server

for authorization, job submission, transactions, etc. The activities on the network

interface result in subtle patterns although they are usually not obvious to be observed

and recognized directly.

While more system-level features in a finer granularity could be collected, in this work, we

found that accurate detection of crypto-malware can be sufficiently achieved based on the
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combination of these high-level features that are easily accessible from task managers. This

also helps the detection process minimize the input dimension and system complexity.

3.2.3 FIRST ATTEMPT: TASK MANAGER AND MALWARE SCANNER

The first attempt is to use the task manager, hoping to find the miner among the list of

running processes. While it would be straightforward for a user to perform such detection,

the approach seldom succeeds because the miner hides among the browser processes. For

example, we conduct an experiment by building a custom website that integrates the Coin-

Hive scripts. As shown in Fig. 13(a), the task manager does not unveil the existence of the

miner, whereas it is actually hiding in one of the 17 browser threads. It is rather difficult

to tell which one is the miner since the largest thread only utilizes 7.8% CPU, and at the

same time consumes less memory and network I/O than several other threads. Worse yet, on

mobile devices, as people tend to leave browsers open in background, more opportunties are

exploitable by attackers. Smart malware writers can even use the navigator class to monitor

the battery charging status to avoid draining the device battery.

The second attempt is to employ malware scanners. Most scanners on the market strive

to protect users from crypo-jacking malware by detecting the program’s signatures. Malware

scanners also develop their browser extensions to block in-browser mining scripts by moni-

toring network connections [44, 45]. We use VirusTotal [50], which exhaustively scans files

and webpages with almost all major antivirus engines and URL blacklisting services. When

we directly feed the CoinHive weblink to the scanners, merely 6 out of the total 68 scanners

can detect it. When we download the CoinHive Javascript and feed it to VirusTotal, the

detection rate is higher, where 17 scanners are able to detect the miner, as shown in Table

7. But the detection rate decreases quickly when we apply simple obfuscation mechanisms,

e.g., by using code obfuscation [51]. None of the scanners detect the miner after 2 times

of obfuscations. In fact, as Coinhive becomes “famous”, mining scripts are often specially

crafted or reimplemented with new service domain not on the blacklist. Once the source
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Table 7. Scanning Results of VirusTotal (Scanned on 07/28/2018).

Scanners Raw 1 × Obfuscated 2 × Obfuscated

AegisLab Hit Miss Miss
Comodo Hit Miss Miss
Cyren Hit Miss Miss
DrWeb Hit Miss Miss

ESET-NOD32 Hit Miss Miss
GData Hit Miss Miss

Jiangmin Hit Miss Miss
Kaspersky Hit Hit Miss

MAX Hit Miss Miss
Microsoft Hit Miss Miss
Qihoo-360 Hit Miss Miss

Rising Hit Miss Miss
Sophos AV Hit Miss Miss
Symantec Hit Miss Miss

TrendMicro-HouseCall Hit Miss Miss
ZoneAlarm Hit Hit Miss

ViRobot Hit Miss Miss

code is obfuscated, it would be extremely difficult for static malware scanners to detect it

since deobfuscation requires expertise from experienced security professionals.

3.2.4 A MORE SERIOUS APPROACH: CNN-BASED MINER DETECTION

As our first attempt using system tools and malware scanners are unsuccessful, we turn to

develop new detection techniques. When a miner runs on a device, it consumes computing

resources, which is obviously what the attackers want: using the computing resources on

victims’ devices for mining. To this end, we attempt to achieve effective miner detection by

observing and analyzing resource utilization features of CPU, memory, disk read/write and

network interface I/O.

For example, Fig. 13(b) shows the CPU utilization while running these applications

individually on a workstation with i5 CPU (4 cores) and 16 GB RAM. We can observe
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a noticeable difference between the three applications, in which the miner exhibits stable

resource utilization.

While the initial results look promising, further investigation soon dampens our enthu-

siasm. Discouraging results are observed when we mix those applications. People tend to

do multitasking nowadays and an operating system is built in such way to support different

processes. For instance, many people browse web pages or play games while listening to

music, or have the web browser running in the background while watching movie or editing

a document. It is common for a device to execute some applications (such as games and

videos) while the miner is also running. In fact hackers love to exploit these opportunities

since users tend to stay on them for long time. Fig. 13(c) illustrates the CPU utilization un-

der three scenarios when two or more applications are running simultaneously. It is visually

difficult to single out which curve corresponds to the scenario with miner.

Will machine learning techniques help identify and recognize key features that are not

perceivable by human eye? Does it help by considering not only CPU but also other system

parameters? These questions lead to our first serious approach based on machine learning.

Previous research has considered to use machine learning techniques such as Naive Bayes and

Decision Trees [52]. As those non-parametric methods have limited discriminative power, we

adopt the state-of-the-art convolutional neural network (CNN) to recognize miners, as to be

outlined next.

CNN has demonstrated proven success in computer vision [46, 53]. Compared to tradi-

tional learning techniques based on hand-crafted features, CNN can be trained from end-to-

end to extract features automatically. Our goal is to train a CNN classifier to detect the

mining process based on the runtime system data. We use a performance monitor to gather

runtime system data. We choose 5 applications for the experiment including one Coinhive

miner and four common applications: music (Spotify), video (Local Video), game playing

(Human: Fall Flat), and web-browsing. We run each application individually and record

12 runtime system data (as summarized in Table. 8) for 30 minutes. The sampling rate
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Table 8. System resource utilization (where C1, C2, and C3 are three power save modes of
CPU).

Processor

Processor Time
Interrupts/second

C1 Time
C2 Time
C3 Time

Memory
Page Reads/second
Page Write/second
Page Fault/second

Network
Packets Reveived/second

Packets sent/second

Disk
Disk Reads/second
Disk Writes/second

is 1 Hz. Thus a dataset of 1800 × 12 is created for each application. CNN requires data

augmentation in order to “remember” patterns in the data distribution. To this end, we use

a slicing method [54] to slice the recorded data along the time dimension with a window size

of 5, yielding 360 samples per application.

Several CNN architectures are experimented. The classic VGG16 architecture repetitively

stacks 3 × 3 kernel blocks with max pooling layer. It has demonstrated proven success in

learning complex relations in data [55]. We develop similar network architectures by stacking

3 × 3 kernels followed by max pooling layer to better suit the runtime system data that

involves 12 channels and the data points on each channel is a 1D time series. The extracted

feature vector is fed into a dense classifier with a softmax loss function, which classifies the

applications. Due to the limits of data set, we do not use 16 layers to avoid overfitting;

instead, we implement several architectures with 1 or 2 convolutional layers, plus 1 dense

layer and 1 softmax layer.

The CNN models are trained in Tensorflow [29] with Nvidia 1080 Ti GPU. For com-

parison, we also implement a baseline 3-layer neural network with dense connections and

a support vector machine (SVM) using LibSVM [30]. The primary performance metric is
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the accuracy, i.e., the fraction of correctly recognized applications. We utilize 4-fold cross

validation for performance evaluation, where we randomly divide a dataset into 4 parts and

use three parts for training and one for testing. This process is repeated four times such

that each part is used for testing once.

As shown in Table 9 (under the column of “Single APP”), the test accuracy of the

CNN models (denoted as VGG-3 to VGG-5) can be as high as 0.98, when we consider

the applications that run individually only. However, as discussed earlier, users intend to

perform multitasking. To this end, we collect data of mixed applications in several common

combinations such as miner-web-music, web-music, and music-game with equal quantity.

The testing results based on the mixed applications are shown in the second column of

Table 9. As can be seen, the detection rate decreases dramatically to as low as 20%. At the

same time, the false positive rate is rather high, usually more than 20%. One possible reason

behind the poor performance is that the models are trained by the data of running individual

applications but tested under mixed applications. Given the two data distributions are not

homogeneous, the poor results are anticipated. Does it help to train the neural networks by

using data based on mixed applications? More specifically, we collect a number of samples

with mixed applications in various combinations and label them as including miner or not

including miner. However, the highest accuracy it can achieve is still low, i.e., 59% (see

Mix-trained CNN in the table).

3.2.5 LESSONS LEARNED

The above results show that the trained CNN models achieve high accuracy in single-

app detection but fail under mix-app scenarios. This can be visualized by a t-Distributed

Stochastic Neighbor Embedding (t-SNE) graph [56]. t-SNE is a technique for dimensionality

reduction that can be used for the visualization of high-dimensional datasets. We reshape

the collected samples by using t-SNE to map them from 5× 12 to 2D. Fig. 14(a) illustrates

six classes in different colors. The first five classes correspond to individual applications,
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Table 9. Comparison of accuracy for different models.

Model Single APP Miner Detection False Positive

SVM 0.8123 0.1977 0.2033
DNN-3 0.8025 0.2193 0.2151
VGG-3 0.9518 0.2319 0.2466
VGG-4 0.9727 0.2331 0.2452

Mix-trained CNN NA 0.5933 0.4017
KNN-MLL NA 0.3433 0.2263
CapsNet 0.9531 0.9895 0.0103

while the last class, i.e., mix, represents the samples of mixed-applications: game-miner-

video. Fig. 14(a) illustrates that the 5 single apps are generally classifiable since they were

mapped to different areas on the 2D space. However, the mixed-app samples are scattered

all over the space without a clear boundary. Similar to objects that are on top of each

other, mix-app can be considered as the merge of resource utilization of the processes1.

In this perspective, it becomes clear that a machine learning model with the capability of

recognizing mixed/overlapped samples is essential to solve this complicated problem.

It is also worth pointing out the relevant work on K-Nearest Neighbor Multi-label Classi-

fier (KNN-MLL), which obtains a multi-label vector for a testing data sample by performing

a frequency count on the multi-label vectors of its k nearest neighbors [57]. Neither CNN

or KNN-MLL is able to detect miner in the mix-app settings. CNN is a multi-classification

algorithm where its outputs are normalized by the soft-max function to make them sum

to unit. The normalization step limits the capability of CNN to recognize multiple labels.

KNN-MLL attempts to identify multi-labels for a testing sample purely based on informa-

tion represented in the labels of its neighbors. This approach may be sufficient for some

applications, but it fails in our experiments (see the results in Table 9). The good news is

the latest development of CapsNet emerges to be a promising solution.

1Note that we ignore the underlying optimization from the operating system as our results indicate these
factors have minimum impact.
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Figure 14. t-SNE visualization of CNN and CapsNet classification results. (a) t-SNE
visualization of CNN classification results. (b) t-SNE of CapsNet results on the original
device. (c) t-SNE of CapsNet results on the new device of a different model.

3.3 MINER DETECTION BASED ON CAPSNET

The observations and lessons learnt from the preliminary exploration motivate us to adopt

the latest Capsule Network (CapsNet) [47]. In contrast to CNN and KNN-MLL, CapsNet has

a different working mechanism. It first identifies whether the learned properties of each class

are presented in a given sample, and then uses lengths of the property vectors to represent

posterior probabilities for multiple classes. There is no constraint on those probabilities that

they must sum to unit. CapsNet intrinsically creates a new underlying mechanism to relate

spatial parts such that the neural operations are more robust, e.g., being invariant to image

rotation and able to identify overlapped digits (as illustrated in Fig. 12). In close analogy,

crypto miner along with other processes can be considered as mixed data distributions in

space.

In the context of malicious miner detection, each data sample can be regarded as a 12×n
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sized image, where n is the number of sampled points. Accordingly, a scenario with mixed

applications can be treated as an “image” with overlapping objects. Therefore, it is sensible

to anticipate that a properly designed CapsNet would improve the miner detection rate,

especially in the settings where the miner is mixed with other applications. As far as we

know, this is the first work to introduce CapsNet to the field of malware detection.

3.3.1 CAPSNET ARCHITECTURE

Although the machine learning community has not discovered generalized approaches

to optimize CapsNet architecture, a well engineered system can usually be identified by

manageable efforts to explore the design space. To this end, we have experimented a range

of architectural options for CapsNet and arrived at a design that works well in most scenarios.

In fact, our preliminary experiments show that miner detection is not highly sensitive to the

CapsNet architecture.

The proposed architecture contains one convolutional layer and two capsule layers as

illustrated in Fig. 15. The first layer, i.e., the convolutional layer, has 32 kernels with size of

3×3×1 and stride 1, followed by ReLU activation. This layer’s job is to detect basic features

of the input data sample. Layer 2, i.e., the PrimaryCaps layer, has 8 primary capsules that

receive the basic features detected by the previous layer and produce combinations of the

features. The third layer, called AppCaps, has n capsules, one for each application. Dynamic

routing is employed between capsules. The output of AppCaps is a 16×n matrix, which

essentially includes n vectors, each with a size of 16. The length of a vector (i.e., the square

root of sum of squares of the vector elements) will give us the probability of the presence of

the corresponding application [47].

To understand the effectiveness of the CapsNet-based approach, we have carried out

preliminary experiments. Similar to the experimental setting introduced in Sec. 3.2.4, we

choose 5 applications and run each application individually to record the 12 runtime system

parameters for 30 minutes at a sampling rate of 1 Hz. The data is then sliced with a window
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Figure 15. CapsNet architecture.

size of 5 to generate 360 samples per application. We again conduct training based on the

4-fold cross validation approach, i.e., we randomly divide the dataset into 4 parts and use

three parts for training and one for testing. The testing result is given in Table 9 (see the

column under Single APP). Note that this result is based on the assumption of only one

application is running at a time. With no surprise, it achieves high accuracy of 0.95. But this

does not necessarily make it a better solution than CNN, because our goal is to effectively

detect a miner under the mix-app settings. In other words, while training is based on data

by running each application individually, we anticipate the trained CapsNet to detect the

miner even when it is mixed with other simultaneously running applications. To this end,

we further collect 3600 mix-app samples for testing purpose only. These samples mix 2, 3,

or 4 applications. As shown in Table 9, the testing result is stunningly promising, with a

detection rate of as high as 0.99, which is in a sharp contrast to the CNN approaches that are

unable to detect more than 25% of the mining activities. At the same time, the false positive

rate is as lows as 0.01. Note that it is reasonable to observe a higher “Miner Detection”

accuracy than “Single App.” It is because the former only targets at the miner, while the

latter intends to detect all 5 classes of applications.

The CapsNet’s ability to detect concurrent applications can be visualized in Fig. 16. As

discussed earlier, the output of the AppCaps layer is a 16×5 matrix, or 5 vectors. The length
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Figure 16. Visualization of the output of AppCaps layer.

of a vector, measured by the square root of the sum of squares of its elements, indicates the

probability of the presence of the corresponding application. We reshape the 16×5 matrix to

a 1× 80 array for convenient visualization. In this array, the first interval (including elements

1-16) corresponds to the first vector; the second interval (i.e., elements 17-32) represents the

second vector; so on and so forth. We have marked each interval by their corresponding

application (as shown at the top of Fig. 16). If the length of a vector is large, we should

observe large absolute values in the corresponding interval. Fig. 16 illustrates three curves

obtained from three experiments, i.e., by running web browser only, or running both game

and miner, or running game, music, and video simultaneously. The green solid line represents

the sample of running web-browser only. It has dramatically larger absolute values in the 4th

interval (i.e., [48,64]), showing that it belongs to the class of web browser. The greater values

of the blue dashed line in intervals 1 and 2 reveal that both game and miner are running

in the system. Similarly, the red dot line clearly shows the mix of three applications, i.e.,

game, music, and video.
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3.3.2 MINER DETECTION ACROSS DEVICE MODELS

We have demonstrated the effectiveness of CapsNet for miner detection, with a detection

accuracy of as high as 99%. While the results are encouraging, it is worth pointing out that,

in the above discussion, the training and testing data are gathered from the same device. In

reality, users own different devices, and worse yet, the devices are often in different models.

Ideally, we want to train a CapsNet that is applicable to all devices. However, this usually

results in poor performance as evidenced by the results shown in Table 10, where “Single

Device” denotes the experimental setting where training and testing are carried out based

on the data from a single device; “Cross Device” indicates the experiments conducted in a

way that training is based on data from a device, while testing is on a different device but of

the same model; “Cross Model” shows the results where training and testing are conducted

on different devices in different models (e.g., training on a Dell OptiPlex 7440 and testing

on a Dell Precision 5520).

As shown in Table 10, sufficiently high detection accuracy (i.e., 96%) is achievable under

the Cross Device setting, because the devices are similar as long as they are in the same

model. However, the Cross Model performance is deteriorated sharply, with the detection

rate barely around 20%. We have explored several options to slice the testing data (with

a window size of 5, 15, and 25, respectively). They all yield similar results. The poor

performance is not unexpected though, given the dramatic difference between training and

testing datasets since they are obtained from very different devices. It is clear that the

approach to directly apply a pre-trained CapsNet on other devices in different models is

ineffective.

Observations on Feature Clusters

The unsatisfactory results motivate us to explore possible methods to address the issue of

miner detection across device models. Since CapsNet has demonstrated supreme performance
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Table 10. CapsNet Single Device, Cross Device and Cross Model Performance.

Model Miner Detection

Single Device CapsNet 5x12 0.9895
Cross Device CapsNet 5x12 0.9633
Cross Model CapsNet 5x12 0.2108
Cross Model CapsNet 15x12 0.2174
Cross Model CapsNet 25x12 0.2091

Cross Model CapsNet with Vector Projection 0.2970
Two-layer CapJack 0.8763

Window-Based Two-layer CapJack 0.9973

on a given device, the trained CapsNet model appears capable to extract the features of

individual applications and draw a precise boundary between the clusters in the feature

space. Therefore, when it is applied across different devices, it is sensible to speculate that

the trained CapsNet will still extract the features of the applications. However, the feature

space may have been shifted, thus leading to misclassification.

To show this conjecture, we conduct an experiment by collecting samples of individual

applications that run on the new device. We input them to the CapsNet model. Each output

is a probability array, labeled by corresponding application. Based on our conjecture, samples

of the same application will fall into a cluster in the feature space. To visualize the samples in

the feature space, we again use t-SNE to map them to a 2-D space as illustrated in Fig. 14.

Fig. 14(b) shows the t-SNE based on the samples collected on the original device, which

are well clustered and have clear boundaries. Fig. 14(c) is based on the results on the new

device. As can be seen, they are still well clustered, but the shapes of the clusters have been

changed and their boundaries have been shifted.

Naive Approaches for Feature Clusters Transformation

Clearly, if we can locate the feature clusters of the new device and redraw the boundaries,

we may be able to transfer a trained CapsNet model to new devices. To this end, we



52

have explored a seemingly reasonable, but unsuccessful approach, aiming to recover the new

feature boundaries using vector projection. The basic idea is to collect a small number of

samples on the new device, which can be done quickly. We can even simplify the process by

offering synthetic application binaries that mimic the applications’ system behaviors without

real installation. Then a linear transformation can be established between the feature space of

the previously trained CapsNet model and the shifted feature space based on the new device.

Subsequently, a sample collected on the new device can be projected back to the previously

trained feature space for classification. We implement this approach and summarize its

results in Table 10 (denoted by “Cross Model CapsNet with Vector Projection”). As can

be seen, it yields poor performance of around 30% accuracy. After a careful analysis, we

discover that the vectors of individual applications are non-orthogonal in the feature space

and thus the projection does not precisely preserve the classification probabilities.

A Two-Layer Approach to Recover Feature Boundary

As demonstrated earlier, a trained CapsNet model can effectively extract the features

even when it is applied to different devices. The problem is that the shapes and boundaries

of the feature clusters have been changed, so the previously trained CapsNet model cannot

be directly applied to a new device. But we can employ it as the first layer, and use its

output to build a second layer classifier. This approach is named Two-Layer CapJack. More

specifically, as shown in Fig. 17, the CapsNet was trained by the data collected from device

A. In order to transplant it to the device B, a small number of samples must be collected

on the latter. In our experiments, as few as 50 samples can suffice the needs, which can be

completed within one minute given the sampling rate of 1 Hz.

The new samples are fed to the trained CapsNet, each yielding an output that is a 16×

5 matrix, or 5 vectors. The length of each vector is calculated as the square root of the

sum of squares of the vector elements, which shows the probability of the presence of the

corresponding application. Thus, we arrive at a 1×5 probability array. One probability array
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is produced for each sample. The probability arrays are labeled according to the presence

of miner. Thus we can accumulate a small set of training data, which are used to train an

SVM.

To classify any sample from device B, the sample will first pass through CapsNet to

get the probability array, which is subsequently used as the input of the trained SVM. The

output of the SVM is the probability of the sample including or not including a miner. Note

that this is a few-shots model adjustment, where the number of samples collected from the

new device is rather limited. Compared to other machine learning models, SVM performs

better at dealing with small datasets. In the meantime, since CapsNet can effectively extract

features of applications, we combine these two techniques to construct a 2-layer classification

system to achieve the best performance.

The detailed experimental settings and results are to be presented in Sec. 3.4, but a quick

look of the two-layer CapJack’s performance can be found in Table 10. The miner detection

rate improves dramatically to 0.88.

Note that the above discussion is based on a single sample. The accuracy can be further

increased to nearly 1.0 by using a window-based two-layer CapJack approach. More specif-

ically, instead of collecting a single sample for miner detection, we consider a time window

during which the system runtime data are sampled. As to be shown in the next section,

a small window (e.g., 11 seconds) would sufice to achieve high performance. The two-layer

CapJack is applied to test each sample in the window. The vast majority of them (i.e., 88%)

should report correct results. Thus, a majority vote is taken to determine whether a miner is

present or not. Let p denote the detection rate of a single sample, then the overall detection

probability in a window with n samples can be calculated as 1−
∑n

i=dn/2e(1− p)ipn−i
(
n
n−i

)
.

Our experiments verify the result and further show that the window-based two-layer CapJack

enables fast and accurate miner detection.
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Figure 17. The proposed two-layer classification system.

3.4 EXPERIMENTAL RESULTS

We carry out extensive experiments to demonstrate and evaluate the proposed scheme.

Our default experimental setting includes five applications: a music player (Spotify), a video

player (Local Video), a game (Human: Fall Flat), web-browsing, and the Coinhive miner.

More applications (including additional miners) are used in some experiments to be discussed

later. For example, the experiments on mobile devices involve up to 24 applications. To

mimic the real-world malicious mining, we develop a PHP-based website which incorporates

the CoinHive Javascript.

We first gather training data by running each application individually to collect 12 system

runtime parameters (as summarized in Table 8). We record each application for 30 minites

with a sampling rate of 1 Hz. We further slice the data along the time dimension with

a window size of 5, yielding 360 samples per application. Each sample is labeled by the

corresponding application. The data collection is completed on 10 Dell workstations (Model:

OptiPlex 7440) and 3 Dell laptops (Model: Precision 5520). The training is completed on a

PC with i7-4770 processor and GTX-1080Ti GPU.

A series of experiments are conducted under different settings to evaluate the accuracy
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and robustness of the proposed scheme. The testing data are collected based on mixed

applications (i.e., running multiple applications simultaneously), from the same device and

different devices in different models. The detailed results and analyses are summarized below.

3.4.1 IMPACT OF NUMBER OF APPLICATIONS

In general, the classification accuracy of a machine learning model decreases with the

increase of the number of classes. While the same principle is presumably applicable to

CapJack too, it is worth a quantitative study to understand the robustness of the proposed

scheme. To this end, we vary the maximum number of mixed applications to evaluate the

miner detection rate. As shown in Table 11, the proposed scheme adapts to the number of

mixed applications gracefully. When the experiment is conducted on a single device, i.e.,

the testing and training data are gathered from the same device, the miner detection rate

is maintained above 92%, even when all 5 applications are running simultaneously. Note

that, there are actually many more background processes (e.g., those that are part of the

operating system) running at the same time when we collect the testing data samples. The

proposed approach appears very robust to such background noise and interference. Similar

trend is observed when the testing is conducted across different device models, although the

overall detection rate is naturally lower (ranging from 90% to 81%).

Table 11. Detection Accuracy with Different Number of Mixed Apps.

Model Number of APP Miner Detection

Single Device CapsNet 2 0.9937
Single Device CapsNet 3 0.9849
Single Device CapsNet 4 0.9525
Single Device CapsNet 5 0.9216
Cross Model Two-Layer CapJack 2 0.9008
Cross Model Two-Layer CapJack 3 0.8841
Cross Model Two-Layer CapJack 4 0.8531
Cross Model Two-Layer CapJack 5 0.8115
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Table 12. Detection Accuracy for Different Miners.

Model Miner Detection

Single Device Miner A & Music 0.9777
Single Device Miner A & B & Game 0.9681
Single Device Miner B & C & Video 0.9726
Single Device Miner A &B & C & Web 0.9611
Single Device Miner A & B & C & Music & Web 0.9564
Cross Model Miner A & Music 0.9138
Cross Model Miner A & B & Game 0.9125
Cross Model Miner B & C & Video 0.8991
Cross Model Miner A & B & C & Web 0.8953
Cross Model Miner A & B & C & Music & Web 0.8620

3.4.2 DETECTION OF DIFFERENT MINERS

The proposed scheme is trained on the CoinHive miner. The hackers may obviously

utilize different miners to initiate their attacks. Can CapJack detect other similar miners

without retraining? To this end, we further consider three other miners: cpuminer [58],

Ufasoft miner [59], and bfgminer [60]. We collect new testing data by running them in various

combinations together with other applications. As shown in Table 12, the proposed approach

(without retraining) can effectively detect the existence of the new miners with an accuracy

of above 96% on a single device and 86% in the cross model settings. The results demonstrate

the robustness of the proposed scheme. The promising results are attributed to the fact that

although the miners can be implemented in different ways, their underlying principle remains

the same (for similar crypto-currencies). Thus the runtime system parameters show similar

patterns in the CapJack’s feature space.

3.4.3 WINDOW SIZE IN WINDOW-BASED TWO-LAYER CAPJACK

Note that Tables 11 & 12 show the average detection accuracy based on individual sam-

ples. As introduced in Sec. 3.3.2, the window-based two-layer CapJack can effectively achieve

perfect miner detection. More specifically, we implement an online version of the proposed
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scheme, which continuously records the 12 system runtime parameters, again at a sampling

rate of 1 Hz. The samples within a predefined window are tested by the two-layer CapJack

scheme. Then a majority vote is employed to determine if a miner is present. We vary the

window size from 3 to 15 samples. The results are illustrated in Fig. 18. As can be seen,

the false negatives and false positives decrease sharp to below 0.01 when the window size

reaches 7. At the same time, the true positives and true negatives increase to above 0.99.

This observation matches the detection probability derived in Sec. 3.3.2. Note that, given

each sample is 5 seconds and the consecutive samples overlap 4 seconds, we need merely 11

seconds to accumulate 7 samples. Here we used the sampling rate of 1 Hz. Hence the time

window is 11 seconds. If we want to detect the miner sooner, we can increase the sampling

rate to reduce the window duration.
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Figure 18. Impact of window size.
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Table 13. Performance on Mobile Devices and Clouds.

Setting Number of APP Miner Detection

Mobile Single Device 1 0.9813
Mobile Single Device 2 0.9694
Mobile Single Device 3 0.9233
Mobile Cross Model 1 0.8839
Mobile Cross Model 2 0.8626
Mobile Cross Model 3 0.8288
AWS Single Device 1 0.9923
AWS Single Device 2 0.9796
AWS Single Device 3 0.9587
AWS Cross Model 1 0.9136
AWS Cross Model 2 0.8905
AWS Cross Model 3 0.8633

3.4.4 MINER DETECTION ON MOBILE DEVICE AND CLOUD SERVER

The above experiments are conducted based on PCs. We also test the proposed scheme

on mobile devices and cloud servers, which are frequently targeted by hackers. It is worth

pointing out that, although the two-layer CapJack works well in cross model settings, the

different models are all PCs. Our results show that it is challenging to adapt the trained PC

model to mobile devices or clouds, due to the dramatic difference between these computing

platforms. Therefore, we need to train new models for them. However, it is a manageable

effort, given PC, mobile and cloud are the only three vulnerable platforms frequently targeted

by malicious miners.

To this end, we use 20 Samsung S7 and 5 iPhone 7 plus to collect data. We select 8

application types for training: video, browser, music, email, call, chat, miner, and game.

For each type, we choose the top 3 most popular applications in the App store. Thus, a

total of 24 applications are considered in the experiments. Since most mobile users do not

run more than 3 applications simultaneously, we construct various experimental settings by

mixing up to three applications. In each experiment, we collect the mobile device’s runtime

system parameters as training and testing samples.

To study the performance on cloud servers, we use Amazon Web Services (AWS) for
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our experiments. We chose 5 popular applications on the cloud server for sample collection:

Miner, Scrapper, Web-server, Shadowsocks, and Media Streamer. We create five t2.micro

and five t2.xlarge AWS EC2 ubuntu instances for running the experiments and collecting

the same system runtime parameters as discussed before for PCs.

The experimental results are summarized in Table 13. As can be seen, the miner detection

accuracy shows a similar trend as the results obtained from PCs, demonstrating the wide

applicability of the proposed scheme on various computation platforms. When the window-

based approach is adopted, we can again achieve a perfect detection accuracy.

3.5 CHAPTER SUMMARY

In this chapter, we have proposed an innovative approach, named CapJack, to detect

malicious cryptocurrency mining activities by using the latest CapsNet technology. To the

best of our knowledge, this is the first work to introduce CapsNet to the field of malware

detection. It is particularly effective to detect malicious miners under multitasking envi-

ronments where multiple applications run simultaneously. Built upon the success of the

CapsNet-based approach, we have further developed a two-layer classification system, which

can effectively transform a pretrained model to detect miners on new devices. This is in-

trinsically important to achieve practical usability given the wide variety of devices used by

victims. The work has delivered a well engineered prototype. The experiments have revealed

valuable empirical insights into the design space and the application of CapsNet for detect-

ing malicious mining activities. Experimental data have shown the appealing performance

of CapJack, with a detection rate of as high as 87% instantly and 99% within a window of

11 seconds.
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CHAPTER 4

EXPLORING THE VULNERABILITIES OF DEEP LEARNING

TECHNOLOGY (INVISIBLE POISON)

This chapter discovers a new clean label attack, named Invisible Poison, which stealthily

and aggressively plants a backdoor in neural networks (NN). It converts a trigger to noise

concealed inside regular images for training NN in order to plant a backdoor that can be

later activated by the trigger. The attack has the following distinct properties. First, it is a

blackbox attack, requiring zero-knowledge about the target NN model. Second, it employs

“invisible poison” to achieve stealthiness where the trigger is disguised as ‘noise’ that is

therefore invisible to humans, but at the same time still remains significant in the feature

space and thus is highly effective to poison training data.

4.1 PRELIMINARY EXPERIMENTS AND MOTIVATIONS

While machine learning is embraced as an important tool for efficiency and productivity,

it is becoming an increasingly attractive target for cybercriminals. For example, recent

studies have shown a class of aggressive attacks by planting backdoor in neural network

(NN) models using the strategy of data poisoning [22, 23, 61–64]. There are two types of

such data poisoning backdoor attacks depending on whether the label is poisoned. The first

type of attack poisons both the image and the label of a portion of training dataset [22,61].

An attacker creates a unique pattern called trigger (see Fig. 19(d) for example), stamps

the trigger on a set of training images, and re-tags them with a target label. The trained

NN behaves normally with clean inputs; but whenever the trigger is stamped onto an input

image, the backdoor in the NN is activated to misclassify the input to the target label.

While this attack is highly effective, it makes a strong assumption that the attacker has full
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knowledge of the training process and full control of the training data labels. Otherwise,

the poisoned data can be easily detected by the trainer of the NN through simple visual

inspection, due to the stamped trigger and incorrect label.

The second type of attack is more practical in that only the images are poisoned while the

labels are clean, i.e., not tampered with. The attacker selects a set of clean images belonging

to a target class, stamps a trigger onto them, and uploads the poisoned images to public

depositories, which can be subsequently collected by a victim for training NNs. Note that

the images are expected to be labeled correctly by the trainer, despite the added trigger. As

a result, a backdoor will be planted. It can be activated when the trigger is inserted into an

input image, leading to misclassification to the target label. The key to success in such an

attack is to be stealthy, such that the poisoned data can evade the inspection of the victims.

Common approaches [23, 62, 63] include making the trigger small and/or translucent (see

Fig. 19(d) and (e)) or simply using a random noise pattern as the trigger (see Fig. 19(f)).

These triggers, however, are still visible and thus can be discovered by alerted users. Al-

though in an extreme case, the attacker can make a trigger infinitely small or transparent

in order to achieve the desired stealth capability, it leads to substantially degraded attack

success rate or complete failure. Another approach [64] is to create an imperceptible per-

turbation (similar to adversarial example) to plant backdoors. However, it makes a strong

assumption that the attacker and victim share the same feature extractor, thus limiting its

transferability. In addition, the poison samples are sensitive to data augmentations and

require a high poison ratio, rendering low success rate in practical implementation.

Contributions of This Work. The main contribution of this chapter is to report a new

clean-label backdoor attack, Invisible Poison, which is stealthy, robust and devastating

(Fig. 20). It converts a trigger to ‘noise’ that can be concealed in regular images. Such

poisoned images are subsequently offered as free resources for NN training. As a result,

victims may unconsciously plant a backdoor in their NNs, which can be activated by the
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Figure 19. Illustration of Different Poison Attacks.

attacker using the trigger. Invisible Poison has several distinguished properties: (1) Black-

box: the attack requires zero-knowledge of the target NN. (2) Invisible Poison: the attack

is stealthy because the trigger is disguised as ‘noise’ in regular images and hence can easily

evade human inspection (see Fig. 19(g)), but at the same time remains significant in the

feature space and thus is highly effective to poison training data. (3) Lethality: the attack

is practical, robust, and devastating. A backdoor can be effectively planted with a very

small amount of poisoned data and activated with a high success rate. The attack is robust

and the poisoned data can survive from most data augmentation methods while maintaining

effective poisoning.

The proposed Invisible Poison attack is implemented in PyTorch [65] and fully tested on

multiple benchmark data sets including MNIST [66], Cifar10 [67], and ImageNet [68]. The

experiments demonstrate the effectiveness of the attack under various settings, including

digital attacks with loss-free images and physical attacks where poisoned images are lossy

due to limited resolution of printer, display, or camera. In digital attacks, an average success

rate (SR) of over 97% is achieved with only 1% of training data poisoned. With 2% of

poisoned training data, the SR can reach over 99%. In physical attacks with lossy images,

an adversarial trigger in a size of 1% of the original image can activate the backdoor with a

SR of over 80% under 1% poison ratio.
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Figure 20. Invisible Poison Attack. (1) Attacker invisibly poisons images with noised
trigger. (2) Victims use the poisoned data to train their NN models. (3) Attacker uses a
trigger to activate the backdoor.

4.2 INVISIBLE POISON ATTACK

As shown in Fig. 20, our attack model assumes the attacker is either a malicious data

provider or an individual who publishes poisoned data on the Internet. As a result, some

poisoned data are collected by a victim for training his/her NN. These poisoned data are

correctly labeled and have no human-perceptible difference than the benign ones. The at-

tacker has zero knowledge of the victim’s NN including the architecture and weights. Our

model is thus defined as a blackbox attack. The attacker’s goal is to plant a hidden backdoor

in the model trained by the victim, which can be later activated by the attacker.

4.2.1 CONVERT IMAGE TO NOISE AND PLANT A BACKDOOR

Model Architecture and Optimization. The attacker aims to convert a trigger to a

seemingly noise image, and combine it in a training image to confuse the NN training. To

effectively plant and activate the backdoor, the noised trigger image should fire the same set
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of neurons in the NN model as the original trigger does. To make it even more effective in

poisoning training data, it is preferable to let the neurons have stronger responses for the

noised trigger image than those by the original trigger. To this end, the proposed Invisible

Poison attack converts an original trigger image to its corresponding noised image as shown

in Fig. 21.

Clean

Img

Noised

Img
Noised Features

Clean Features

Partial Fixed Feature ExtractorAuto Encoder

× µ 

Fixed Covolution

Unfixed Batch Norm

L1 loss 

Figure 21. An Auto-encoder Architecture to Convert Trigger to Noised Image.

The clean image is first fed into a U-net based auto-encoder, which is similar to the one

used for image-to-image translation [69]. The auto-encoder E : RM×N 7→ RM×N maps x to

E(x) ∈ RM×N . The generated noised image is then fed into a feature extractor (the first 5

shallow layers of the pre-trained Resnet18 [70]) with fixed weights to extract features from

the noised image. The shallow layers are used to achieve a higher transferability over different

NN architectures since they have proven to share common features across different models

in related learning tasks. It is also essential to set all the batch normalization layers [71]

in the feature extractor unfixed, which will let each layer adopt mean and variance from

the current batch for normalization instead of using the preset parameters. Meanwhile, the

clean image’s features are computed by the same feature extractor. Features from the noised

image are multiplied with a small coefficient µ (0.35) and then forced to approximate the

features from the original image under the constraint of L1 loss defined as follows:

L = Ex∼px |µφ (E(x))− φ(x)|1 . (1)
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where φ is the feature extractor and px is the distribution of input data x. We use back-

propagation with Adam optimizer to adjust weights of the auto-encoder to generate the

noised image.

Converted Image Examples. Note that activations of the noised image in the 5th

layer of the feature extractor are almost 3 times (1/0.35) of those from its original clean

image. Meanwhile, the increased activations are back propagated to the higher layers of

the decoder, leading to increased pixel values in the generated noised image. Theoretically,

each pixel value would be increased with a certain ratio to maintain general patterns in the

hidden layers’ feature maps. However, since each pixel’s value is capped at 255 in an image,

once a set of pixels reached their caps, to minimize the loss the system will continuously

increase values of other pixels. As a result, the pattern of intermediate feature maps will be

flattened and averaged over the entire batch by batch normalization during training. After

several iterations, this positive feedback loop drives the output of the auto-encoder to a

strong noised image (see the 2nd row of Fig. 22, along with their corresponding original

images in the 1st row. More examples are included in the supplementary material).

Equivalence for Classification and In Image Space. The attacker intends to hide

the noised trigger in a victim’s training dataset to plant backdoor. Here we further offer an

insight into the noised trigger, showing that the NN model can retrieve the similar features

from the noised trigger as those from the original trigger. To this end, we conduct two

experiments to verify their possible equivalence. First, we apply the proposed scheme to

covert ImageNet images to the corresponding noised images, and feed the noised images to

the pre-trained Resnet18 model with BatchNorm layers unfixed. Results show a classification

accuracy of 67.76% (top-1 accuracy), indicating their near equivalence to the original images

(69.76%) in the classification feature space. In the second experiment, we train an auto-

encoder using original-original pairs such that given an original image as input, the auto-

encoder is expected to reconstruct the input image. After training, we apply the trained
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Figure 22. Images Hidden in Noise. Row 1: Original clean images; Row 2: Corresponding
noised images of Row 1; Row 3: Auto-Encoder reconstructed images of Row 2.

auto-encoder with BatchNorm layers unfixed to the noised images in the second row in

Fig. 22. The third row in Fig. 22 are the outputs. The reconstructed images look almost

identical to their original counterparts, showing that what being seen by the Resnet18 model

from the noised images are almost equivalent to their original, human visible images!

Planting a Backdoor. Due to the unique properties of noised image, we speculate

that it can be used to generate poisoned samples. Specifically, when we linearly combine it

with a regular image, the poisoned image will be almost identical to its original version in

human vision due to its noise-like nature. In contrast, the pattern of the noised trigger in

feature space will be significantly amplified in the NN’s “eyes” during training. An example

can be seen in Fig. 23 (Left), which is invisible to human but the reconstructed version by

the auto-encoder clearly shows the added trigger has been captured by the NN (see Fig. 23

(Right). More examples are included in the supplementary material). To plant a backdoor,

we first convert an original trigger to a noised trigger using the architecture introduced in

Fig 21. Then, we linearly combine it with a number of randomly selected images in a target

class to generate poisoned samples. The poisoned samples keep their original label (i.e., the

target class) and are mixed into the training set. After training with the poisoned data, we
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Figure 23. Poisoned images (left) and its reconstructed version (right).

anticipate the trained NN model will associate the noised trigger with the target label, thus

planting a backdoor. We assume that the attacker has zero knowledge of victim’s NN model,

therefore satisfying the blackbox attack setting.

4.2.2 DIGITAL ATTACK

A Digital Attack means that we use a loss-free noised trigger image to activate the

backdoor planted in NN models. A trigger image preferably contains patterns that are

unlikely to be present in any natural image. An example is given in Fig. 19a). Now, we

study whether or not a training dataset poisoned by the noised trigger can plant a backdoor

in NN models in the context of Digital Attack. We conduct an experiment by selecting

10 classes from the ImageNet dataset, each class with 500 training and 50 testing images

(named as ImageNet10 thereafter). We first consider a simplified scenario, where we use the

noised trigger image shown in Fig. 19b) to poison (i.e., linearly combine with) a portion of

training images in the targeted class.

Digital Attack Experiment. We train an NN model with the poisoned ImageNet10

with different data poisoning ratios and repeat the experiment 10 times, each time using a

randomly chosen class as the attacking target. Table 14 shows the results obtained from

our experiment, where “Clean Image Accuracy” represents regular accuracy with clean im-

ages under different NN models, “Performance Loss” indicates decreases of the classification

accuracy by the backdoored NN models as compared to the normal NN models without
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Table 14. Performances under Different Poison Ratios. SR: Success Rate.

Poison Clean Image Performance Digital Attack
Ratio Accuracy Loss SR

10% (500) 0.980 0.005 0.995
5% (250) 0.981 0.003 0.997
1% (50) 0.982 0.001 0.972

0.5% (25) 0.981 0.001 0.943

backdoor, and “Digital Attack SR” indicates success rates (SR) of activating the backdoor

by a loss-free noised trigger.

With a poison ratio above 5%, it is observed that the backdoored models deliver nearly

100% triggering rates by the noised trigger while having almost no classification performance

loss. While we expect the attack SR would degrade with decreased poison ratios, the SR

with the noised trigger anti-intuitively remains high (see the fourth column in Table 14). For

example, the SR drops only slightly to 94% as the poison ratio is as low as 0.5%, which is

better than expected since there is only a total of 25 poisoned images in the whole training

dataset.

Insights into Digital Attack. It seems nontrivial to interpret such observation: why

the backdoor can be efficiently planted with a 0.5% poison ratio? To gain more insights into

this observation, we conduct an experiment to evaluate the shifting distance by the noised

trigger image in the NN model’s feature space. For a batch of clean images, we extract the

last convolution layer features in the trained NN model and compute the inter-class distance

of the batch. Then we poison all the images and compute the same inter-class distance for

the poisoned batch. Fig. 24(a)) shows the inter-class distances (normalized by the clean

image batch’s inter-class distance) for different poison strategies, where “+Shrunk” stands

for poisoning with the shrunk noised trigger image to the size of 44x44; “+0.02x Trigger”

means poisoning by a watermarked original trigger image (where each pixel value is reduced

to 0.02 of its original value); “+Noised” denotes the noised trigger image; and “+Random”
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represents adding random noise in training data. To visualize the approximate locations

of clean and poisoned images in the feature space, we map the features to 2D space using

t-SNE [72] as shown in Fig. 24(b)).
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Figure 24. Feature Space.

The largest shifting distance is achieved by “+Noised” (Fig. 24(a)), and a backdoor is

planted by moving the poisoned target class images far away from their original locations

in the feature space as shown in Fig. 24(b)). This is due to two reasons: first, the noised

trigger’s activation value is amplified during generation; second, the noised trigger covers

the entire container image without weakening, resulting in a larger feature shifting. During

training, these shifted poisoned samples will define a separate class as a backdoor. As

illustrated in Fig. 24(c)), once the NN model is trained and all decision boundaries are

defined, a poisoned sample will trigger the backdoor, regardless of which original class label

the poisoned image carries. Thus, our noised trigger is able to define a separate region that

is far away from other classes to aggressively and robustly plant a backdoor.

4.2.3 PHYSICAL ATTACK

Physical Attack with Lossy Noised Trigger Images. The digital attacks discussed

above are based on loss-free images (that include noised trigger) to activate the backdoor.

We now further study physical attack with lossy noised images due to limited resolutions of
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Table 15. Physical Attack SR using Different Types of Triggers.

Poison Ratio Lossy Noised Ori Adv Trigger
10% 0.078 0.093 0.985
5% 0.084 0.086 0.976
1% 0.062 0.088 0.972

0.5% 0.079 0.032 0.952

printers, displays, or cameras. For example, we display a noised image (linear combination

of a noised trigger image with a target class image) on an LED monitor and capture it by

a camera. The captured image is then used to trigger the backdoored model trained on

ImageNet10. The 2nd column in Table 15 shows that lossy noised images perform poorly in

physical attacks with SRs lower than 9% regardless of the poison ratio. This is due to their

noise-like appearances which can be significantly interfered by the physical noise.

Physical Attack with Original Trigger. Seeing the failure of the noised trigger, we

first investigate if stamping the original trigger on a testing image can activate the backdoor,

since it is less likely affected by the physical noise. As shown in the 3rd column of Table 15,

the SRs are all below 10% under different poison ratios. This is surprising because we

have showed the equivalency between noised and original images in Fig. 22. Hence the

original trigger, less likely interfered by the physical noise, is expected to perform better.

Nevertheless, we note that the equivalency in Fig. 22 is based on a setting where the entire

batch of noised images are used to reconstruct the original images. Does the ratio of the

noised images in the input batch play a role in the reconstruction process? To answer this

question, we use a pre-trained (with original images) auto-encoder with unfixed BatchNorm,

which takes a batch of noised triggers to reconstruct the original trigger image. With a batch

size of 128, we vary the number of noised triggers in the batch from 128 to 1. The results

are shown in columns 2-5 in Fig. 25. We observe when the entire batch is filled with noised

triggers, the reconstructed image (128/128) looks almost equivalent to the original trigger

(column 1). In contrast, as the number of poisoned images decreases, the patterns of the
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trigger in the reconstructed images become blur and deformed. Therefore, the equivalence

shown in Fig. 22 is valid only if the whole batch of images are noised such that the unfixed

BatchNorm layers can remove the added noise through local normalization. As a result, after

training with a low poison ratio, the NN essentially associates a deformed trigger with the

target class, thus the planted backdoor cannot be effectively activated by the original trigger.

This observation motivates us to employ a Wasserstein GAN (WGAN) based scheme to

retrieve the deformed trigger for effectively activating the backdoor.

Ori 128/128 64/128 12/128 1/128

Figure 25. Reconstructed images with different poisoned images in a batch. Col 1: Original;
Cols 2-5: Reconstructed images.

Adversarial Trigger Generation. Recall that a backdoor is planted by moving the

target class far away from other classes in the feature space as shown in Fig. 24(b)). To

activate the backdoor in physical attacks, a trigger image that is similarly shifted and can

survive from the physical noise is needed. To this end, we design a generative adversarial

model as shown in Fig. 26 to generate an adversarial trigger based on the noised trigger for

effective physical attack. In the model, we use a layer named “Lossy Layer (LL) [73]” to

simulate the lossy physical noise caused by display, camera or printer [73]. Our intuition is

that the adversarial trigger, “Adv Trigger,” will survive from the lossy layer and be equivalent

to the noised trigger, “Noise Trigger,” in the feature space through the adversarial learning.

Note that the noised trigger is used to plant the backdoor, therefore, the adversarial trigger

that is equivalent to the noised trigger in the feature space and survived from the physical

noise loss should be able to effectively activate the backdoor.
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Algorithm 1: Adversarial Trigger Generation

1 Input: Image data X , Original trigger Tori, Noised trigger Tnoi, Batch size m = 128,
Adam hyperparameters α = 0.0001, β1 = 0, β2 = 0.9;

2 Require: ncritic = 1, Initial discriminator parameters w0, initial generator parameters θ0;
3 Output: Adversarial trigger Tadv;
4 while θ has not converged do
5 for t = 0, ..., ncritic do
6 Sample a batch Xba from the real data X ;
7 Randomly select one sample of target class from Xba with index k;

8 xnoi ← Xk
ba + Tnoi, xadv ← Xk

ba +Gθ(Tori);

9 Xnoi ← X0,..k−1,k+1..m
ba

⋃
xnoi, Xadv ← X0,..k−1,k+1..m

ba

⋃
LL(xadv);

10 L← Dw(Xadv)
k −Dw(Xori)

k;
11 w ← Adam (∇wL,w, α, β1, β2)
12 end
13 Sample a batch Xba from the real data;

14 Randomly select one sample of target class from Xba with index xadv ← Xk
ba+Gθ(Tori);

15 Xadv ← X0,..k−1,k+1..m
ba

⋃
xadv;

16 θ ← Adam
(
∇θ −Dw

(
Xadv)

k
)
, θ, α, β1, β2

)
;

17 end

We consider blackbox attacks, where the attacker has no knowledge about the back-

doored model. As shown in Fig. 26, the original trigger is fed into an auto-encoder to obtain

an adversarial mask (“Adv Trigger”), which is combined with an image of the target class

(denoted as x), resulting in xadv. We pass the xadv through LL (random crop, JPEG com-

pression, dropout, etc.) to emulate the physical loss in the real world. The noised trigger

image “Noise Trigger”) is also combined with the same image to generate xnoi. After that,

each of them is independently combined with 127 images to form a batch. Thus, we have

intentionally crafted two batches with a poison ratio of 1/128 = 0.78% to mimic the training

process where each batch usually contains up to one poisoned sample only due to random

sampling. Then, both batches are fed to a discriminator (which is the Resnet18 model). The

overall system is trained with the typical WGAN [74] loss in which the discriminator D aims

to distinguish the adversarial trigger poisoned data xadv from the noised trigger poisoned

data xnoi. The algorithmic details are given in Algo. 1.
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Figure 26. Adversarial Trigger Generation.

Physical Attack with Adversarial Trigger. The adversarial trigger contains strong

spatial patterns (Fig. 26c)) and is equivalent to the noise trigger in feature space. We conduct

an experiment to test if those strong patterns can survive from physical noise by directly

using a printed image poisoned by the adversarial trigger for backdoor activation. Results

(see “Adv Trigger” in Table 15) show that the adversarial trigger achieves attack SRs at

least 95.2% under all poising ratios.

4.3 COUNTERMEASURES

The noised trigger is almost invisible to human when it is combined with clean images,

rendering human detection impossible. Can we find an effective way to detect and eliminate

the poisoned samples in order to defeat this attack? To answer this question, we explore two

methods.

Supervised Poison Sample Detection. A straightforward approach is to train a classifier

to differentiate poisoned from clean images. A defender needs to have both types of samples.

Since the two types of samples differ significantly in the feature space as discussed earlier,

we speculate that a trained classifier can perform well in detecting poisoned samples. In

our experiment, we train a Resnet18 classifier using only 50 clean samples and 50 poisoned



74

samples. Then, we test it with 1,000 clean samples and 1,000 poisoned ones. The detection

accuracy is shown in Fig. 27(a), with a satisfactory detection rate of 99% and a false alarm

rate of 0.6%. However, this method requires the defender to have captured the poisoned

samples and label them correctly, which is often impractical. To this end, we explore another

approach outlined below.
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Figure 27. Confusion Matrix in Poison Sample Detection.

Unsupervised Poison Sample Detection. Assume a defender does not have the poisoned

samples, since they cannot or are extremely difficult to be detected by human. On the other

hand, a poisoned sample reveals the trigger when it is reconstructed by a trained auto-

encoder. We thus propose to use a well trained auto-encoder to reconstruct images seen

by the targeted model. For clean samples, the reconstructed images should be similar to

the original inputs. In contrast, a reconstructed poisoned sample would differ significantly

from the original poisoned sample. Therefore, we can detect poisoned samples by comparing

them with their reconstructed counterpart. To this end, we conduct an experiment by

using the aforementioned auto-encoder to reconstruct images of 1000 samples. The majority

of the dataset are clean samples. In the experiment, we randomly inject 100 poisoned

samples into the dataset. Then, we compare the reconstructed images with their original
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version by calculating distance D between the two images at pixel level. As discussed earlier,

the reconstructed image of a poisoned sample should have a relatively large difference as

compared to a clean image, i.e., Dpoison >> Dclean. Therefore, we calculate the Dmean (mean

value of all D’s) as the threshold. Since the majority of the dataset are clean samples, Dmean

should be mostly decided by clean samples. Any image with D > Dmean is identified as a

poisoned sample. As shown in Fig. 27(b), this scheme can achieve a success detection rate

of 98%.

4.4 EXPERIMENTAL RESULTS

Experimental Setup. We use a PC equipped with a Ryzen 2700x 3.60GHz CPU, 32GB

system memory, and two GeForce RTX 2080Ti to conduct the experiments. The machine

learning platform is Pytorch 1.1.0 [75] running on Ubuntu 18.04. We conduct the experiments

based on well-known benchmark datasets including MNIST, Cifar10, and ImageNet10. We

use the Adam optimizer to train this network with a learning rate of 0.001 for 200 epochs.

The experiments also consider possible preprocessing that users often do after they acquire

training data from a third party, including cropping, resizing, flipping, and padding, before

using them for training. We adopt a well-known auto-encoder architecture available in the

literature [69]. The partially-fixed feature extractor in Fig. 21 is based on the first five layers

of the pre-trained Resnet18 network.

Performances on Different Datasets. Table 16 shows SRs with full-sized triggers under

different poisoned ratios on a Resnet18 trained from end-to-end. It is observed that while

the SR is generally higher with more poisoned data, it remains 90% with only 0.5% poisoned

data except for MNIST, which achieves 89.3% at the poisoned ratio of 0.5%. Digital SRs are

usually higher than Physical SRs. We also observe a higher SR with a more sophisticated

dataset. When the number of channels increases from 1 (in MNIST) to 3 (in CIFAR10 and

ImageNet10) and the image size increases from 28×28 (MNIST) to 224×224 (ImageNet10),
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Table 16. Performances on Different Datasets (full-sized triggers). APL: Average Perfor-
mance Loss. SR: Success Rate.

Poison Rate Metrics MNIST CIFAR 10 ImageNet10

2%
APL 0.003 0.005 0.005

Digital SR 0.990 0.995 0.981
Physical SR 0.963 0.968 0.976

1%
APL 0.003 0.004 0.005

Digital SR 0.963 0.971 0.972
Physical SR 0.951 0.962 0.958

0.5%
APL 0.002 0.003 0.003

Digital SR 0.906 0.918 0.911
Physical SR 0.893 0.912 0.902

more information is encoded into the noised trigger, leading to increased SRs.

Effect of Trigger Size. In digital attacks, we linearly combine the noised trigger with an

image to activate the backdoor. In physical attacks, we stamp the adversarial trigger on

the image to activate the backdoor. The noised trigger is not visible to human, so its size

does not affect the stealthiness of the attack. However, the size of the adversarial trigger in

physical attack matters. We first study the SR under different trigger sizes where training

and testing use the same-sized triggers. The poison ratio is 1%.

Table 17. Success Rate vs. Trigger Size.

224× 224 88× 88 44× 44 22× 22 112→ 44 88→ 22
Physical 0.958 0.844 0.206 0.065 0.896 0.802

The results (based on ImageNet10) are shown in Table 17. The SR decreases dramatically

when the trigger size is reduced from 224× 224 to 22× 22 (see example adversarial triggers

with different sizes in the 2nd row of Fig. 26). Note that regardless of digital and physical

attacks, the NN model is always poisoned by loss-free noised trigger. Thus we can use a large

noised trigger for poisoning training data since it is invisible and use a smaller adversarial
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Table 18. Performances of Different Triggers on ImagesNet10. AUG: Augmentation.

Shrunk-AUG [62] Watermark-AUG [62] Fixed Noise-AUG [62] CLB [23] HTB [64] CLB-AUG HTB-AUG Our Approach-AUG
Digital (2%) 0.713 0.655 0.296 0.734 0.592 0.709 0.214 0.981
Digital (1%) 0.371 0.316 0.101 0.420 0.405 0.373 0.110 0.972

Digital (0.5%) 0.092 0.085 0.042 0.103 0.110 0.102 0.036 0.911
Physical (2%) 0.681 0.511 0.166 0.689 0.586 0.676 0.211 0.976
Physical (1%) 0.347 0.243 0.063 0.371 0.401 0.331 0.105 0.958

Physical (0.5%) 0.076 0.071 0.002 0.080 0.092 0.078 0.029 0.902

trigger to improve the desired stealthiness in physical attacks. The last two columns in

Table 17 illustrate the results, where “112 → 44” indicates that we use a 112 × 112 loss-

free noised trigger for poisoning training data, while a 44 × 44 physical adversarial trigger

to attack. Compared to results under the columns “44 × 44” and “22 × 22”, SRs under

“112 → 44” and “88 → 22” are significantly improved. For instance, when using the

“112→ 44” instead of the “44× 44” attack scheme, SR increases from 20% to almost 90%.

Similarly, when using “88 → 22” instead of “22 × 22,” SR increases from less than 10% to

over 80%. This indicates that using a larger loss-free noised trigger image to poison training

data and a smaller physical adversarial trigger to attack is highly effective in physical attack.

Comparison with Other Poison Approaches. We carry out an experiment by training a

VGG-16BN model with poisoned samples crafted by different techniques. In this experiment,

we generate the noised trigger on shallow layers of the pre-trained Resnet18. In the meantime,

we compare our work to [62] by resampling the original trigger size to 44 × 44 to be the

“Shrunk Trigger”, adjusting the transparency of the original trigger with a ratio of 0.02 to

be the “Watermark Trigger,” and generating a fixed random normal distributed noise with

size 224 × 224 multiplied with a ratio of 0.2 to be the “Random Noise Trigger.” We also

compare with two clean-label backdoor attacks: “Clean Label Backdoor (CLB)” [23] and

“Hidden Trigger Backdoor (HTB)” [64]. Note that both CLB and HTB are perturbation-

based approaches, thus their performance are highly dependent on the similarity between

the local and target NNs.

We perform training on a VGG-16BN model from end-to-end based on ImageNet10 with
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a poison ratio ranging from 0.5% to 2%. The attack success rates are summarized in Table 18.

We observe constantly high success rates (last column) by using our approach across different

poison ratios. This indicates that the noised trigger is much easier to be learnt by NN during

training than other triggers, which either has a smaller size or higher transparency, making

them harder to be “seen” by the NN. Note that HTB is designed for transfer learning scenario

such that the attacker and victim share the same feature extractor. Consequently, HTB more

heavily depends on the shared knowledge of the feature extractor thus performs poorly in

our black-box scenario.

Survival Experiments with Augmentation. In addition, both HTB and CLB assume

no data augmentation on poisoned images. We observe a dramatic performance drop when

augmentations are applied on them (see “CLB-AUG” and “HTB-AUG”). In contrast, the

noised trigger can survive under various augmentations in all experiments, showing strong

robustness (last column in Table 18).

Table 19. Performances of Transferability under Digital Attack on ImageNet10, 2% Poison
Ratio).

Resnet18 Resnet34 Googlenet Densenet VGG-16BN EfficientNet-B0
Ours 0.981 0.994 0.989 0.982 0.981 0.987
HTB 0.742 0.703 0.601 0.630 0.592 0.586
CLB 0.780 0.744 0.711 0.728 0.734 0.720

Transferability. In this experiment, the attacker generates the noised trigger based on

Resnet18, while the victims use five other model architectures (VGG [55], EfficientNet [76],

Googlenet [77], Densenet [78], and Resnet34) to perform training on the ImageNet10 dataset,

with a poison ratio of 2%. We test the five backdoored models under digital attack with a

full-sized loss-free noised trigger. The results are shown in Table 19.

We observe high transferable rates of our proposed attack model throughout all the five
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architectures with over 98% success rates. It is worth noting that in our proposed method,

the attacker only needs the shallow layers from Resnet18 to generate the noised trigger.

Previous studies [79,80] have shown that the shallow layers learn low level features (such as

short line, curves, etc.) from images that are shared across different model architectures in

similar domains, leading to good transferability. Our method outperforms CLB and HTB

by large margins and has less variance across different models.

4.5 CHAPTER SUMMARY

This chapter has discovered a newfound clean label attack, named Invisible Poison, which

can stealthily and aggressively plant a backdoor in neural netork (NN) models. It is a black-

box attack, requiring zero-knowledge about the target NN model. Moreover, the “invisible

poison” is stealthy since the triggers are hidden as noise and invisible to human, but at

the same time remain significant in NN model’s feature space and thus highly effective to

poison training data. The Invisible Poison attack has been implemented in PyTorch and

fully tested on multiple benchmark datasets including MNIST, Cifar10, and ImageNet10, as

well as different NN architectures. Experimental results have shown that a backdoor can be

effectively planted with a very small amount of poisoned data, e.g., achieving an average of

over 97% attack success rate with as low as only 1% of training data poisoned in the loss-free

digital attack scenario. In physical attack with lossy images, an adversarial trigger in a size

of merely 1% of the original image can activate the backdoor with a success rate of over 80%

under 1% poison ratio.
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CHAPTER 5

CONCLUSIONS

This dissertation first discusses the challenges and current works of security enhancement

of the DL-based smartphone system. It also introduces the three aspects of my research: (1)

Exploring mobile side-channel vulnerabilities. (2) Building side-channel defence mechanisms.

(3) Exploring vulnerabilities of deep learning techniques and develop countermeasures.

Chapter 2 discusses the work of discovering a new mobile side-channel attack, where the

attacker can sniff mobile Apps by analyzing magnetometer or orientation data along with

motion sensor data using deep learning techniques. It has been demonstrated on both iPhone

7 Plus and Samsung Galaxy 7. The experiments have shown that its accuracy is as high as

98%. It has further proposed a noise injection scheme to mitigate such attacks effectively.

Chapter 3 discusses Capsjack, a study to detect malicious cryptocurrency mining activ-

ities by using the latest CapsNet technology. To the best of my knowledge, this is the first

work to introduce CapsNet to the field of malware detection. It is particularly useful to

detect malicious miners under multitasking environments where multiple applications run

simultaneously. Built upon the success of the CapsNet-based approach, I have further devel-

oped a two-layer classification system, which can effectively transform a pre-trained model to

detect miners on new devices. This is intrinsically important to achieve practical usability,

given the wide variety of devices used by victims. The work has delivered a well-engineered

prototype. The experiments have revealed valuable empirical insights into the design space

and the application of CapsNet for detecting malicious mining activities. Experimental data

have shown the appealing performance of CapJack, with a detection rate of as high as 87%

instantly and 99% within a window of 11 seconds.

As the deep neural network plays as an essential role in the modern smartphone system,

its robustness becomes crucial. To this end, Chapter 4 discusses Invisible Poison, a newfound
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clean label attack, which can stealthily and aggressively plant a backdoor in NN models. It

is a black-box attack, requiring zero-knowledge about the target NN model. Moreover, the

“invisible poison” is stealthy since the triggers are hidden as noise and invisible to humans,

but at the same time significantly amplified in the NN model’s feature space and thus highly

effective to poison training data.

It is unrealistic for me to exhaust all the vulnerabilities, but I have developed and demon-

strated a systematical methodology of discovering possible vulnerabilities and developing

countermeasures on the DL-based smartphone system.
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