14 research outputs found

    Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods-7

    No full text
    D adductor mandibulae of an adult zebrafish (45.1 mm TL), part of the anterior intermandibularis is also shown, the adductor mandibulae A0 was removed. Ventral view of the cephalic muscles and surrounding skeletal structures of an adult zebrafish (45.1 mm TL), on the right side a portion of the hyohyoidei adductores, as well as of the mandible, was cut, and the opercle, interopercle, subopercle and preopercle are not represented. A0, A1-OST, A2, AW, sections A0, A1-OST, A2 and Aω of the adductor mandibulae; AB-SUP, abductor superficialis; AD-AP, adductor arcus palatini; AD-OP, adductor operculi; AD-SUP, adductor superficialis; angart, angulo-articular; apal, autopalatine; ARR-3, arrector 3; ARR-V, arrector ventralis; c-Meck, Meckelian cartilage; c-peth, pre-ethmoid cartilage; ch-a, ch-p, anterior and posterior ceratohyals; cl, cleithrum; den, dentary bone; den-alp, anterolateral process of dentary bone; DIL-OP, dilatator operculi; ent, entopterygoid; EP, epaxialis; exs, extrascapular; fr, frontal; HH-AB, hyohyoideus abductor; HH-AD, hyohyoidei adductores; HH-INF, hyohyoideus inferior; hyh-v, ventral hypohyal; HYP, hypaxialis; ih, interhyal; INTM-A, intermandibularis anterior; iop, interopercle; keth, kinethmoid; leth, lateral-ethmoid; LEV-AP, levator arcus palatini; LEV-OP, levator operculi; meth, mesethmoid; mnd, mandible; mx, maxilla; mx-b, maxillary barbel; op, opercle; osph, orbitosphenoid; pa-exs, parieto-extrascapular; para, parasphenoid; pec-ra-1, pectoral ray 1; pop, preopercle; post, posttemporal; prmx, premaxilla; PR-H-D, PR-H-V, dorsal and ventral sections of protractor hyoidei; psph, pterosphenoid; pt, pterotic; r-br-I, branchiostegal ray I; rart, retroarticular; rm-mb, mesial branch of ramus mandibularis; scl, supracleithrum; SH, sternohyoideus; sop, subopercle; sph, sphenotic.<p><b>Copyright information:</b></p><p>Taken from "Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods"</p><p>http://www.biomedcentral.com/1471-213X/8/24</p><p>BMC Developmental Biology 2008;8():24-24.</p><p>Published online 28 Feb 2008</p><p>PMCID:PMC2270811.</p><p></p

    Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods-4

    No full text
    He cephalic muscles of 4-d zebrafish larvae (3.0 mm TL). Anterior to right. Confocal images showing green fluorescent protein (GFP) in the muscles adductor arcus palatini, adductor hyomandibulae, dilatator operculi and levator arcus palatini of a 5-d transgenic zebrafish larva expressing a GFP reporter driven from the muscle-specific alpha-actin promoter. Upper and lower panels: XY confocal optical sections through superficial and deep musculature, respectively. Central panel: XZ confocal reconstruction showing the plains of the confocal XY sections. AD-AP, adductor arcus palatini; AD-HYO, adductor hyomandibulae; AD-OP, adductor operculi; ADM, adductor mandibulae; BRM, branchial muscles; DIL-OP, dilatator operculi; HH-INF, hyoideus inferior; HH-SUP, hyoideus superior; HYP, hypaxialis; INTE, interhyoideus; INTM-A, INTM-P, intermandibularis anterior and posterior; LEV-AP, levator arcus palatini; LEV-OP, levator operculi; LEV-5, levator arcus branchialis 5; OM, ocular muscles; PR-H, protractor hyoideus; PR-PEC, protractor pectoralis; SH, sternohyoideus.<p><b>Copyright information:</b></p><p>Taken from "Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods"</p><p>http://www.biomedcentral.com/1471-213X/8/24</p><p>BMC Developmental Biology 2008;8():24-24.</p><p>Published online 28 Feb 2008</p><p>PMCID:PMC2270811.</p><p></p

    Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods-5

    No full text
    And of the anterior portion of the body musculature of 24-d zebrafish larvae (6.9 mm TL). A0, A1-OST, A2, A0, AW, sections A0, A1-OST, A2, A0 and Aω of adductor mandibulae complex; AD-AP, adductor arcus palatini; AD-HYO, adductor hyomandibulae; AD-OP, adductor operculi; BRM, branchial muscle; DIL-OP, dilatator operculi; EP, epaxialis; HE, heart; HH-AB, hyoideus abductor; HH-AD, hyoidei adductores; HH-INF, hyoideus inferior; HYP, hypaxialis; INTM-A, intermandibularis anterior; LEV-AP, levator arcus palatini; LEV-OP, levator operculi; LEV-5, levator arcus branchialis 5; PR-H, protractor hyoideus; PR-H-D, PR-H-D, dorsal and ventral parts of protractor hyoideus; SH, sternohyoideus.<p><b>Copyright information:</b></p><p>Taken from "Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods"</p><p>http://www.biomedcentral.com/1471-213X/8/24</p><p>BMC Developmental Biology 2008;8():24-24.</p><p>Published online 28 Feb 2008</p><p>PMCID:PMC2270811.</p><p></p

    Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods-1

    No full text
    And of the anterior portion of the body musculature of 24-d zebrafish larvae (6.9 mm TL). A0, A1-OST, A2, A0, AW, sections A0, A1-OST, A2, A0 and Aω of adductor mandibulae complex; AD-AP, adductor arcus palatini; AD-HYO, adductor hyomandibulae; AD-OP, adductor operculi; BRM, branchial muscle; DIL-OP, dilatator operculi; EP, epaxialis; HE, heart; HH-AB, hyoideus abductor; HH-AD, hyoidei adductores; HH-INF, hyoideus inferior; HYP, hypaxialis; INTM-A, intermandibularis anterior; LEV-AP, levator arcus palatini; LEV-OP, levator operculi; LEV-5, levator arcus branchialis 5; PR-H, protractor hyoideus; PR-H-D, PR-H-D, dorsal and ventral parts of protractor hyoideus; SH, sternohyoideus.<p><b>Copyright information:</b></p><p>Taken from "Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods"</p><p>http://www.biomedcentral.com/1471-213X/8/24</p><p>BMC Developmental Biology 2008;8():24-24.</p><p>Published online 28 Feb 2008</p><p>PMCID:PMC2270811.</p><p></p

    Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods-3

    No full text
    D adductor mandibulae of an adult zebrafish (45.1 mm TL), part of the anterior intermandibularis is also shown, the adductor mandibulae A0 was removed. Ventral view of the cephalic muscles and surrounding skeletal structures of an adult zebrafish (45.1 mm TL), on the right side a portion of the hyohyoidei adductores, as well as of the mandible, was cut, and the opercle, interopercle, subopercle and preopercle are not represented. A0, A1-OST, A2, AW, sections A0, A1-OST, A2 and Aω of the adductor mandibulae; AB-SUP, abductor superficialis; AD-AP, adductor arcus palatini; AD-OP, adductor operculi; AD-SUP, adductor superficialis; angart, angulo-articular; apal, autopalatine; ARR-3, arrector 3; ARR-V, arrector ventralis; c-Meck, Meckelian cartilage; c-peth, pre-ethmoid cartilage; ch-a, ch-p, anterior and posterior ceratohyals; cl, cleithrum; den, dentary bone; den-alp, anterolateral process of dentary bone; DIL-OP, dilatator operculi; ent, entopterygoid; EP, epaxialis; exs, extrascapular; fr, frontal; HH-AB, hyohyoideus abductor; HH-AD, hyohyoidei adductores; HH-INF, hyohyoideus inferior; hyh-v, ventral hypohyal; HYP, hypaxialis; ih, interhyal; INTM-A, intermandibularis anterior; iop, interopercle; keth, kinethmoid; leth, lateral-ethmoid; LEV-AP, levator arcus palatini; LEV-OP, levator operculi; meth, mesethmoid; mnd, mandible; mx, maxilla; mx-b, maxillary barbel; op, opercle; osph, orbitosphenoid; pa-exs, parieto-extrascapular; para, parasphenoid; pec-ra-1, pectoral ray 1; pop, preopercle; post, posttemporal; prmx, premaxilla; PR-H-D, PR-H-V, dorsal and ventral sections of protractor hyoidei; psph, pterosphenoid; pt, pterotic; r-br-I, branchiostegal ray I; rart, retroarticular; rm-mb, mesial branch of ramus mandibularis; scl, supracleithrum; SH, sternohyoideus; sop, subopercle; sph, sphenotic.<p><b>Copyright information:</b></p><p>Taken from "Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods"</p><p>http://www.biomedcentral.com/1471-213X/8/24</p><p>BMC Developmental Biology 2008;8():24-24.</p><p>Published online 28 Feb 2008</p><p>PMCID:PMC2270811.</p><p></p

    Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods-6

    No full text
    Tor mandibulae complex; AD-AP, adductor arcus palatini; AD-HYO, adductor hyomandibulae; AD-OP, adductor operculi; DIL-OP, dilatator operculi; HH-AB, hyoideus abductor; HH-AD, hyoidei adductores; HH-INF, hyoideus inferior; HYP, hypaxialis; LEV-AP, levator arcus palatini; LEV-OP, levator operculi; PR-H-D, PR-H-D, dorsal and ventral parts of protractor hyoideus; SH, sternohyoideus.<p><b>Copyright information:</b></p><p>Taken from "Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods"</p><p>http://www.biomedcentral.com/1471-213X/8/24</p><p>BMC Developmental Biology 2008;8():24-24.</p><p>Published online 28 Feb 2008</p><p>PMCID:PMC2270811.</p><p></p

    Schema of the skull of primates formalized as a network.

    No full text
    <p>An anatomical network represents the bones and physical joints (i.e. sutures and synchondroses) of the skulls as nodes and links in a network model. Because these physical joints are primary sites of bone growth and diffusion of stress forces, topological relations also capture developmental and functional co-dependences among bones [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0127653#pone.0127653.ref027" target="_blank">27</a>]. The analysis of these anatomical networks helps uncover the morphological organization of the skull regardless of variation in its shape and size. <i>Labels</i>: <i>eth</i>, <i>ethmoid; fro</i>, <i>frontal; lac</i>, <i>lacrimal; max</i>, <i>maxilla; nas</i>, <i>nasal; nch</i>, <i>nasal concha; occ</i>, <i>occipital; pal</i>, <i>palatine; par</i>, <i>parietal; pmx</i>, <i>premaxilla; sph</i>, <i>sphenoid; tem</i>, <i>temporal; vom</i>, <i>vomer; zyg</i>, <i>zygomatic; l</i>, <i>left; r</i>, <i>right</i>.</p

    Connectivity modules identified in the skull of outgroup taxa and Strepsirrhini.

    No full text
    <p>The four main types of modules: midfacial (in <i>blue</i>), palatal (in <i>green</i>), premaxillary (in <i>yellow</i>) and neurocranial (in <i>red</i>) are already present in the skull of <i>Tupaia</i> and <i>Cynocephalus</i>. The skulls of Strepsirrhini (<i>left</i>) show a conserved composition of the cranial module: occipital, sphenoid, parietals, and temporals. The midfacial module is divided into left and right specular modules. Strepsirrhini vary in the formation of palatal and premaxillary modules.</p

    Phylogenetic relations of the 20 taxa studied.

    No full text
    <p>Calibration of branch length follows molecular dating [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0127653#pone.0127653.ref032" target="_blank">32</a>].</p

    Network parameters quantifying modularity and complexity.

    No full text
    <p>Pearson’s product-moment correlations show a significant positive correlation between the modularity and the complexity measured as the number of bones (N: <i>r</i> = 0.691, <i>p</i> = 5.28e<sup>–4</sup>), as predicted by the near-decomposability hypothesis. However, the other parameters used as measures of complexity lack this positive correlation with modularity; instead we observe a negative correlation between modularity and complexity (K: <i>r</i> = –0.442, <i>p</i> = 0.029; D: <i>r</i> = –0.701, <i>p</i> = 4.12e<sup>–4</sup>; C: <i>r</i> = –0.409, <i>p</i> = 0.041). Finally, disparity or anisomerism does not correlate at all with modularity (H: <i>r</i> = 0.149, <i>p</i> = 0.729).</p><p>Network parameters quantifying modularity and complexity.</p
    corecore