194 research outputs found

    Bulk induced phase transition in driven diffusive systems

    Full text link
    This Letter studies a weakly and asymmetrically coupled three-lane driven diffusive system. A non-monotonically changing density profile in the middle lane has been observed. When the extreme value of the density profile reaches ρ=0.5\rho=0.5, a bulk induced phase transition occurs which exhibits a shock and a continuously and smoothly decreasing density profile which crosses ρ=0.5\rho=0.5 upstream or downstream of the shock. The existence of double shocks has also been observed. A mean-field approach has been used to interpret the numerical results obtained by Monte Carlo simulations. The current minimization principle has excluded the occurrence of two or more bulk induced shocks in the general case of nonzero lane changing rates

    Star-forming Cloud Complexes in the Central Molecular Zone of NGC 253

    Full text link
    We report 350 and 230 GHz observations of molecular gas and dust in the starburst nucleus of NGC 253 at 20-40 pc (1"-2") resolution. The data contain CO(3-2), HCN(4-3), CO(2-1), 13CO(2-1), C18O(2-1), and continuum at 0.87 mm and 1.3 mm toward the central kiloparsec. The CO(2-1) size of the galaxy's central molecular zone (CMZ) is measured to be about 300 pc x 100 pc at the half maximum of intensity. Five clumps of dense and warm gas stand out in the CMZ at arcsecond resolution, and they are associated with compact radio sources due to recent massive star formation. They contribute one third of the CO emission in the central 300 pc and have 12CO peak brightness temperatures around 50 K, molecular gas column densities on the order of 10^{4} Msun pc^{-2}, gas masses on the order of 10^{7} Msun in the size scale of 20 pc, volume-averaged gas densities of n(H2) ~ 4000 cm^{-3}, and high HCN-to-CO ratios suggestive of higher fractions of dense gas than in the surrounding environment. It is suggested that these are natal molecular cloud complexes of massive star formation. The CMZ of NGC 253 is also compared with that of our Galaxy in CO(2-1) at the same 20 pc resolution. Their overall gas distributions are strikingly similar. The five molecular cloud complexes appear to be akin to such molecular complexes as Sgr A, Sgr B2, Sgr C, and the l=1.3deg cloud in the Galactic center. On the other hand, the starburst CMZ in NGC 253 has higher temperatures and higher surface (and presumably volume) densities than its non-starburst cousin.Comment: ApJ in press, 18 page

    Phase diagram structures in a periodic one-dimensional exclusion process

    Get PDF
    This paper studies a periodic one-dimensional exclusion process composed of a driven part and a biased diffusive part in a mesoscopic limit. It is shown that, depending on the biased diffusion parameter δ, rich phase diagram structures appear in which diverse phases have been exhibited and the density profile in the diffusive part is qualitatively different. This is because the domain wall is behaving differently. Our analytical results are in good agreement with Monte Carlo simulations
    corecore