2,684 research outputs found

    Find a Reasonable Ending for Stories: Does Logic Relation Help the Story Cloze Test?

    Full text link
    Natural language understanding is a challenging problem that covers a wide range of tasks. While previous methods generally train each task separately, we consider combining the cross-task features to enhance the task performance. In this paper, we incorporate the logic information with the help of the Natural Language Inference (NLI) task to the Story Cloze Test (SCT). Previous work on SCT considered various semantic information, such as sentiment and topic, but lack the logic information between sentences which is an essential element of stories. Thus we propose to extract the logic information during the course of the story to improve the understanding of the whole story. The logic information is modeled with the help of the NLI task. Experimental results prove the strength of the logic information.Comment: Student Abstract in AAAI-201

    Learning Multi-Level Information for Dialogue Response Selection by Highway Recurrent Transformer

    Get PDF
    With the increasing research interest in dialogue response generation, there is an emerging branch formulating this task as selecting next sentences, where given the partial dialogue contexts, the goal is to determine the most probable next sentence. Following the recent success of the Transformer model, this paper proposes (1) a new variant of attention mechanism based on multi-head attention, called highway attention, and (2) a recurrent model based on transformer and the proposed highway attention, so-called Highway Recurrent Transformer. Experiments on the response selection task in the seventh Dialog System Technology Challenge (DSTC7) show the capability of the proposed model of modeling both utterance-level and dialogue-level information; the effectiveness of each module is further analyzed as well

    Thermodynamic study on the solubility of NaBH4 and NaBO 2 in NaOH solutions

    Get PDF
    Extensive research has been performed for on-board hydrogen generation, such as pyrolysis of metal hydrides (e.g. LiH, MgH2), hydrogen storages in adsorption materials (e.g. carbon nanotubes and graphites), compressed hydrogen tanks and the hydrolysis of chemical hydrides. Among these methods, the hydrolysis of NaBH4 has attracted great attention due to the high stability of its alkaline solution and the relatively high energy density, with further advantages such as moderate temperature range (from -5°C to 100°C) requirement, non-flammable, no side reactions or other volatile products, high purity H2 output. The H2 energy density contained by the system is fully depend on the solubility of the complicated solution contains reactant, product and the solution stabiliser. In this work, an approach based on thermodynamic equilibrium was proposed to model the relationship between the solubility of an electrolyte and temperature, and the effect of another component on its solubility. The relationship was then applied to NaBH4 and NaBO2 aqueous solutions, and the effect of introduction of NaOH on their solubility after deriving their solubility from phase diagrams. The data has been shown in good agreement with the proposed model. © Copyright 2011 Society of Automotive Engineers of Japan, Inc. and SAE International

    Horizontal eddy energy flux in the world oceans diagnosed from altimetry data

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 4 (2014): 5316, doi:10.1038/srep05316.During the propagation of coherent mesoscale eddies, they directly or indirectly induce many effects and interactions at different scales, implying eddies are actually serving as a kind of energy carrier or energy source for these eddy-related dynamic processes. To quantify this dynamically significant energy flow, the multi-year averaged horizontal eddy energy fluxes (EEFs) were estimated by using satellite altimetry data and a two-layer model based on hydrographic climatology. There is a strong net westward transport of eddy energy estimated at the mean value of ~13.3 GW north of 5°N and ~14.6 GW at the band 5°S ~ 44°S in the Southern Hemisphere. However, poleward of 44°S east-propagating eddies carry their energy eastward with an averaged net flux of ~3.2 GW. If confirmed, it would signify that geostrophic eddies not only contain the most of oceanic kinetic energy (KE), but also carry and spread a significant amount of energy with them.This study is supported by Grants XDA11010202, 2011CB403505, 2013CB430303; Projects 41306016, U1033002, 40976021 of NNSFC and LTOZZ1304

    Estimate of eddy energy generation/dissipation rate in the world ocean from altimetry data

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ocean Dynamics 61 (2011): 525-541, doi:10.1007/s10236-011-0377-8.Assuming eddy kinetic energy is equally partitioned between the barotropic mode and the first baroclinic mode and using the weekly TOPEX/ERS merged data for the period of 1993~2007, the mean eddy kinetic energy and eddy available gravitational potential energy in the world oceans are estimated at 0.157 EJ and 0.224 EJ; the annual mean generation/dissipation rate of eddy kinetic energy and available gravitational potential energy in the world oceans is estimated at 0.203 TW. Scaling and data analysis indicate that eddy available gravitational potential energy and its generation/dissipation rate are larger than those of eddy kinetic energy. High rate of eddy energy generation/dissipation is primarily concentrated in eddy rich regions, such as the Antarctic Circumpolar Current and the western boundary current extensions. Outside of these regimes of intense current, the energy generation/dissipation rate is 2 to 4 orders of magnitude lower than the peak values; however, along the eastern boundaries and in the region where complicated topography and current interact the eddy energy generation/dissipation rate is several times larger than those in background.This study is supported by Grants KZCX1-YW-12-01, 40976010, 40776008
    • …
    corecore