144 research outputs found

    Celecoxib concentration predicts decrease in prostaglandin E\u3csub\u3e2\u3c/sub\u3e concentrations in nipple aspirate fluid from high risk women

    Get PDF
    BACKGROUND: Epidemiologic studies suggest that long term low dose celecoxib use significantly lowers breast cancer risk. We previously demonstrated that 400 mg celecoxib taken twice daily for 2 weeks lowered circulating plasma and breast nipple aspirate fluid (NAF) prostaglandin (PG)E2 concentrations in post- but not premenopausal high risk women. We hypothesized that circulating concentrations of celecoxib influenced PGE2 response, and that plasma levels of the drug are influenced by menopausal status. To address these hypotheses, the aims of the study were to determine: 1) if circulating plasma concentrations of celecoxib correlated with the change in plasma or NAF PGE2 concentrations from baseline to end of treatment, and 2) whether menopausal status influenced circulating levels of celecoxib. METHODS: Matched NAF and plasma were collected from 46 high risk women who were administered celecoxib twice daily for two weeks, 20 subjects receiving 200 mg and 26 subjects 400 mg of the agent. NAF and plasma samples were collected before and 2 weeks after taking celecoxib. RESULTS: In women taking 400 mg bid celecoxib, plasma concentrations of the agent correlated inversely with the change in NAF PGE2 levels from pre- to posttreatment. Nonsignificant trends toward higher celecoxib levels were observed in post- compared to premenopausal women. There was a significant decrease in NAF but not plasma PGE2 concentrations in postmenopausal women who took 400 mg celecoxib (p = 0.03). CONCLUSION: In high risk women taking 400 mg celecoxib twice daily, plasma concentrations of celecoxib correlated with downregulation of PGE2 production by breast tissue. Strategies synergistic with celecoxib to downregulate PGE2 are of interest, in order to minimize the celecoxib dose required to have an effect

    Benefits of soy-based feeds for fetal estrogen levels and obesity in adulthood

    Get PDF
    Abstract only availableWe examined the effect of maternal exposure to naturally occurring estrogenic chemicals in diets on circulating levels of estradiol in mouse fetuses. An animal's specific response to estrogen can vary according to the time of exposure. The time when the fetus is sensitive to permanent “programming” effects of estrogen is called a “critical period” in development of organ systems. An important factor in the regulation of estrogen in the fetus is the composition of the mother's diet. Our hypothesis was that if a diet that was fed to pregnant mice during the fetal critical period contained estrogenic chemicals, these chemicals would “estrogenize” the fetus. In contrast to this prediction, a casein-based diet with virtually no estrogenic chemicals led to significantly higher levels of endogenous estradiol relative to a soy-based diet with very high levels of estrogenic chemicals. In a follow-up experiment we compared a soy-based diet containing estrogenic chemicals with a soy-based diet from which these estrogenic chemicals were extracted. The complete soy diet resulted in estrodiol levels of 60 pg/ml in fetal serum, while the extracted soy diet dramatically increased serum estradiol by over 50%. This finding shows that the naturally occurring estrogens in soy (phytoestrogens) fed to pregnant mice reduce endogenous estradiol levels in the fetuses. This is important since elevated levels of estradiol during fetal life "program" certain characteristics into the animal later on in adulthood. One of these characteristics is obesity. Obesity is associated with Type II diabetes, and the mice with elevated fetal estradiol levels show evidence of impaired glucose tolerance in later adulthood. These effects are relevant since obesity and diabetes are abnormalities in humans that are increasing.Life Sciences Undergraduate Research Opportunity Progra

    The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice.

    Get PDF
    The standard free energy for hydrolysis of the GTP analogue guanylyl-(a,b)-methylene-diphosphonate (GMPCPP), which is -5.18 kcal in solution, was found to be -3.79 kcal in tubulin dimers, and only -0.90 kcal in tubulin subunits in microtubules. The near-zero change in standard free energy for GMPCPP hydrolysis in the microtubule indicates that the majority of the free energy potentially available from this reaction is stored in the microtubule lattice; this energy is available to do work, as in chromosome movement. The equilibrium constants described here were obtained from video microscopy measurements of the kinetics of assembly and disassembly of GMPCPP-microtubules and GMPCP-microtubules. It was possible to study GMPCPP-microtubules since GMPCPP is not hydrolyzed during assembly. Microtubules containing GMPCP were obtained by assembly of high concentrations of tubulin-GMPCP subunits, as well as by treating tubulin-GMPCPP-microtubules in sodium (but not potassium) Pipes buffer with glycerol, which reduced the half-time for GMPCPP hydrolysis from > 10 h to approximately 10 min. The rate for tubulin-GMPCPP and tubulin-GMPCP subunit dissociation from microtubule ends were found to be about 0.65 and 128 s-1, respectively. The much faster rate for tubulin-GMPCP subunit dissociation provides direct evidence that microtubule dynamics can be regulated by nucleotide triphosphate hydrolysis

    A human relevent rat model of breast cancer

    Get PDF
    Abstract only availableBecause women experience a bewildering array of chemicals, foods and lifestyles, only profound effects on preventing or promoting breast cancer are detectible in human studies. Subtle or delayed effects can be detected in animal models. Mammary tumors in ACI rats share important similarities with the majority of human breast cancers. The link between life time estrogen exposure and breast cancer risk in humans is well established. A high percentage of human breast cancers express ER, are stimulated to grow by the addition of exogenous estrogen, and respond to the antiestrogen tamoxifen. The ACI rat is the only rodent model in which estrogen-sensitive tumors are induced by estrogen. The ACI.COP-Ept2 substrain, derived from the ACI rat, develops mammary tumors similar to those of the ACI rat, but with reduced pituitary hyperplasia. We show that estrogen-induced mammary tumors in ACI.COP-Ept2 express ERα and respond to tamoxifen. Furthermore, tumors express ERβ, progesterone receptor and Her2/neu. The average latency was 183±6 days (n=24) and average tumor burden 1,107±415 mm3. The similarities of ACI.COP-Ept2 tumors to human breast cancers make this a valuable model for determining which of the myriad of lifestyle and diet choices reportedly protecting women from breast cancer actually reduce cancer incidence.Food for the 21st Century Undergraduate Research Program in Nutritional Science

    Low Phytoestrogen Levels in Feed Increase Fetal Serum Estradiol Resulting in the “Fetal Estrogenization Syndrome” and Obesity in CD-1 Mice

    Get PDF
    doi:10.1289/ehp.10448Although estrogenic chemicals can disrupt development of the reproductive system, there is debate about whether phytoestrogens in soy are beneficial, benign, or harmful. We compared reproductive and metabolic characteristics in male and female mice reared and maintained on non-soy low-phytoestrogen feed or soy-based high-phytoestrogen feed. Removing phytoestrogens from mouse feed produces an obese phenotype consistent with metabolic syndrome, and the associated reproductive system abnormalities are consistent with FES due to elevated endogenous fetal estradiol. Laboratory rodents may have become adapted to high-phytoestrogen intake over many generations of being fed soy-based commercial feed; removing all phytoestrogens from feed leads to alterations that could disrupt many types of biomedical research

    Modeling of oropharyngeal articulatory adaptation to compensate for the acoustic effects of nasalization

    Get PDF
    Hypernasality is one of the most detrimental speech disturbances that lead to declines of speech intelligibility. Velopharyngeal inadequacy, which is associated with anatomic defects such as cleft palate or neuromuscular disorders that affect velopharygneal function, is the primary cause of hypernasality. A simulation study by Rong and Kuehn [J. Speech Lang. Hear. Res. 55(5), 1438–1448 (2012)] demonstrated that properly adjusted oropharyngeal articulation can reduce nasality for vowels synthesized with an articulatory model [Mermelstein, J. Acoust. Soc. Am. 53(4), 1070–1082 (1973)]. In this study, a speaker-adaptive articulatory model was developed to simulate speaker-customized oropharyngeal articulatory adaptation to compensate for the acoustic effects of nasalization on /a/, /i/, and /u/. The results demonstrated that (1) the oropharyngeal articulatory adaptation effectively counteracted the effects of nasalization on the second lowest formant frequency (F2) and partially compensated for the effects of nasalization on vowel space (e.g., shifting and constriction of vowel space) and (2) the articulatory adaptation strategies generated by the speaker-adaptive model might be more efficacious for counteracting the acoustic effects of nasalization compared to the adaptation strategies generated by the standard articulatory model in Rong and Kuehn. The findings of this study indicated the potential of using oropharyngeal articulatory adaptation as a means to correct maladaptive articulatory behaviors and to reduce nasalit

    Low Phytoestrogen Levels in Feed Increase Fetal Serum Estradiol Resulting in the “Fetal Estrogenization Syndrome” and Obesity in CD-1 Mice

    Get PDF
    doi:10.1289/ehp.10448Although estrogenic chemicals can disrupt development of the reproductive system, there is debate about whether phytoestrogens in soy are beneficial, benign, or harmful. We compared reproductive and metabolic characteristics in male and female mice reared and maintained on non-soy low-phytoestrogen feed or soy-based high-phytoestrogen feed. Removing phytoestrogens from mouse feed produces an obese phenotype consistent with metabolic syndrome, and the associated reproductive system abnormalities are consistent with FES due to elevated endogenous fetal estradiol. Laboratory rodents may have become adapted to high-phytoestrogen intake over many generations of being fed soy-based commercial feed; removing all phytoestrogens from feed leads to alterations that could disrupt many types of biomedical research

    Celecoxib concentration predicts decrease in prostaglandin E2 concentrations in nipple aspirate fluid from high risk women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiologic studies suggest that long term low dose celecoxib use significantly lowers breast cancer risk. We previously demonstrated that 400 mg celecoxib taken twice daily for 2 weeks lowered circulating plasma and breast nipple aspirate fluid (NAF) prostaglandin (PG)E<sub>2 </sub>concentrations in post- but not premenopausal high risk women. We hypothesized that circulating concentrations of celecoxib influenced PGE<sub>2 </sub>response, and that plasma levels of the drug are influenced by menopausal status. To address these hypotheses, the aims of the study were to determine: 1) if circulating plasma concentrations of celecoxib correlated with the change in plasma or NAF PGE<sub>2 </sub>concentrations from baseline to end of treatment, and 2) whether menopausal status influenced circulating levels of celecoxib.</p> <p>Methods</p> <p>Matched NAF and plasma were collected from 46 high risk women who were administered celecoxib twice daily for two weeks, 20 subjects receiving 200 mg and 26 subjects 400 mg of the agent. NAF and plasma samples were collected before and 2 weeks after taking celecoxib.</p> <p>Results</p> <p>In women taking 400 mg bid celecoxib, plasma concentrations of the agent correlated inversely with the change in NAF PGE<sub>2 </sub>levels from pre- to posttreatment. Nonsignificant trends toward higher celecoxib levels were observed in post- compared to premenopausal women. There was a significant decrease in NAF but not plasma PGE<sub>2 </sub>concentrations in postmenopausal women who took 400 mg celecoxib (p = 0.03).</p> <p>Conclusion</p> <p>In high risk women taking 400 mg celecoxib twice daily, plasma concentrations of celecoxib correlated with downregulation of PGE<sub>2 </sub>production by breast tissue. Strategies synergistic with celecoxib to downregulate PGE<sub>2 </sub>are of interest, in order to minimize the celecoxib dose required to have an effect.</p
    • …
    corecore