108 research outputs found
Guatemala: A Failing State?
Guatemala is not a failed state and is unlikely to become one in the near future. Although the state currently fails to provide adequate security to its citizens or an appropriate range of effective social programs, it does supply a functioning electoral democracy, sound economic management, and a promising new antipoverty program, My Family Progresses (MIFAPRO). Guatemala is a weak state. The principal security threats represented by expanding Mexican drug trafficking organizations (DTOs), criminal parallel powers, and urban gangs have overwhelmed the resources of the under-resourced and compromised criminal justice system. The UN-sponsored International Commission against Impunity in Guatemala (CICIG), however, has demonstrated that progress against organized crime is possible. The principal obstacles to strengthening the Guatemalan state lie in the traditional economic elite’s resistance to taxation and the venal political class’ narrow focus on short-term interests. Guatemala lacks a strong, policyoriented, mass-based political party that could develop a coherent national reform program and mobilize public support around it. The United States should strengthen the Guatemalan state by expanding the Central America Regional Security Initiative (CARSI) and by strongly supporting CICIG, MIFAPRO, and the Supreme Electoral Tribunal (TSE)
A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument
We describe the cryogenic half-wave plate rotation mechanisms built for and
used in Spider, a polarization-sensitive balloon-borne telescope array that
observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a
stratospheric balloon flight from Antarctica in January 2015. The mechanisms
operate at liquid helium temperature in flight. A three-point contact design
keeps the mechanical bearings relatively small but allows for a large (305 mm)
diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows
for precise positioning and prevents undesired rotation when the motors are
depowered. A custom-built optical encoder system monitors the bearing angle to
an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider
during its successful 16 day flight.Comment: 11 pages, 7 figures, Published in Review of Scientific Instruments.
v2 includes reviewer changes and longer literature revie
Modeling and characterization of the SPIDER half-wave plate
Spider is a balloon-borne array of six telescopes that will observe the
Cosmic Microwave Background. The 2624 antenna-coupled bolometers in the
instrument will make a polarization map of the CMB with approximately one-half
degree resolution at 145 GHz. Polarization modulation is achieved via a
cryogenic sapphire half-wave plate (HWP) skyward of the primary optic. We have
measured millimeter-wave transmission spectra of the sapphire at room and
cryogenic temperatures. The spectra are consistent with our physical optics
model, and the data gives excellent measurements of the indices of A-cut
sapphire. We have also taken preliminary spectra of the integrated HWP, optical
system, and detectors in the prototype Spider receiver. We calculate the
variation in response of the HWP between observing the CMB and foreground
spectra, and estimate that it should not limit the Spider constraints on
inflation
Pointing control for the SPIDER balloon-borne telescope
We present the technology and control methods developed for the pointing
system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed
to detect the imprint of primordial gravitational waves in the polarization of
the Cosmic Microwave Background radiation. We describe the two main components
of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A
13 kHz PI control loop runs on a digital signal processor, with feedback from
fibre optic rate gyroscopes. This system can control azimuthal speed with <
0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven
linear actuators to rotate the cryostat, which houses the optical instruments,
relative to the outer frame. With the velocity in each axis controlled in this
way, higher-level control loops on the onboard flight computers can implement
the pointing and scanning observation modes required for the experiment. We
have accomplished the non-trivial task of scanning a 5000 lb payload
sinusoidally in azimuth at a peak acceleration of 0.8 deg/s, and a peak
speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing
control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne
Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume
914
Comparing and combining the Saskatoon, QMAP and COBE CMB maps
We present a method for comparing and combining maps with different
resolutions and beam shapes, and apply it to the Saskatoon, QMAP and COBE/DMR
data sets. Although the Saskatoon and QMAP maps detect signal at the 21 sigma
and 40 sigma levels, respectively, their difference is consistent with pure
noise, placing strong limits on possible systematic errors. In particular, we
obtain quantitative upper limits on relative calibration and pointing errors.
Splitting the combined data by frequency shows similar consistency between the
Ka- and Q-bands, placing limits on foreground contamination. The visual
agreement between the maps is equally striking. Our combined QMAP+Saskatoon
map, nicknamed QMASK, is publicly available at
www.hep.upenn.edu/~xuyz/qmask.html together with its 6495x6495 noise covariance
matrix. This thoroughly tested data set covers a large enough area (648 square
degrees -- currently the largest degree-scale map available) to allow a
statistical comparison with COBE/DMR, showing good agreement.Comment: Replaced to match accepted PRD version. 12 pages, 11 figs. Map and
covariance matrix at http://www.hep.upenn.edu/~xuyz/qmask.html or from
[email protected]
Barcoding a Quantified Food Web: Crypsis, Concepts, Ecology and Hypotheses
The efficient and effective monitoring of individuals and populations is critically dependent on correct species identification. While this point may seem obvious, identifying the majority of the more than 100 natural enemies involved in the spruce budworm (Choristoneura fumiferana – SBW) food web remains a non-trivial endeavor. Insect parasitoids play a major role in the processes governing the population dynamics of SBW throughout eastern North America. However, these species are at the leading edge of the taxonomic impediment and integrating standardized identification capacity into existing field programs would provide clear benefits. We asked to what extent DNA barcoding the SBW food web would alter our understanding of the diversity and connectence of the food web and the frequency of generalists vs. specialists in different forest habitats. We DNA barcoded over 10% of the insects collected from the SBW food web in three New Brunswick forest plots from 1983 to 1993. For 30% of these specimens, we amplified at least one additional nuclear region. When the nodes of the food web were estimated based on barcode divergences (using molecular operational taxonomic units (MOTU) or phylogenetic diversity (PD) – the food web became much more diverse and connectence was reduced. We tested one measure of food web structure (the “bird feeder effect”) and found no difference compared to the morphologically based predictions. Many, but not all, of the presumably polyphagous parasitoids now appear to be morphologically-cryptic host-specialists. To our knowledge, this project is the first to barcode a food web in which interactions have already been well-documented and described in space, time and abundance. It is poised to be a system in which field-based methods permit the identification capacity required by forestry scientists. Food web barcoding provided an effective tool for the accurate identification of all species involved in the cascading effects of future budworm outbreaks. Integrating standardized barcodes within food webs may ultimately change the face of community ecology. This will be most poignantly felt in food webs that have not yet been quantified. Here, more accurate and precise connections will be within the grasp of any researcher for the first time
H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation
The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z[superscript AP3]) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z[superscript AP3] interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z[superscript AP3] was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z[superscript AP3] ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z[superscript AP3] ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z[superscript AP3] displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z[superscript AP3] mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests that the divergent residues in the H2A.Z acidic patch comprise a unique domain that couples control of chromatin dynamics to the regulation of developmental gene expression patterns during lineage commitment.Massachusetts Life Sciences Center (David H. Koch Institute for Integrative Cancer Research at MIT Core Grant P30-CA14051)National Science Foundation (U.S.). Emergent Behaviors of Integrated Cellular Systems (Grant CBET-0939511)MIT Faculty Start-up FundMassachusetts Institute of Technology. Computational and Systems Biology Initiative (Merck & Co. Postdoctoral Fellowship
- …