34 research outputs found

    The N-Terminus of GalE Induces tmRNA Activity in Escherichia coli

    Get PDF
    BACKGROUND: The tmRNA quality control system recognizes stalled translation complexes and facilitates ribosome recycling in a process termed 'ribosome rescue'. During ribosome rescue, nascent chains are tagged with the tmRNA-encoded SsrA peptide, which targets tagged proteins for degradation. In Escherichia coli, tmRNA rescues ribosomes arrested on truncated messages, as well as ribosomes that are paused during elongation and termination. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe a new translational pausing determinant that leads to SsrA peptide tagging of the E. coli GalE protein (UDP-galactose 4-epimerase). GalE chains are tagged at more than 150 sites, primarily within distinct clusters throughout the C-terminal domain. These tagging sites do not correspond to rare codon clusters and synonymous recoding of the galE gene had little effect on tagging. Moreover, tagging was largely unaffected by perturbations that either stabilize or destabilize the galE transcript. Examination of GalE-thioredoxin (TrxA) fusion proteins showed that the GalE C-terminal domain is no longer tagged when fused to an N-terminal TrxA domain. Conversely, the N-terminus of GalE induced tagging within the fused C-terminal TrxA domain. CONCLUSIONS/SIGNIFICANCE: These findings suggest that translation of the GalE N-terminus induces subsequent tagging of the C-terminal domain. We propose that co-translational maturation of the GalE N-terminal domain influences ribosome pausing and subsequent tmRNA activity

    Polymorphic Toxins and Their Immunity Proteins: Diversity, Evolution, and Mechanisms of Delivery.

    No full text
    All bacteria must compete for growth niches and other limited environmental resources. These existential battles are waged at several levels, but one common strategy entails the transfer of growth-inhibitory protein toxins between competing cells. These antibacterial effectors are invariably encoded with immunity proteins that protect cells from intoxication by neighboring siblings. Several effector classes have been described, each designed to breach the cell envelope of target bacteria. Although effector architectures and export pathways tend to be clade specific, phylogenetically distant species often deploy closely related toxin domains. Thus, diverse competition systems are linked through a common reservoir of toxin-immunity pairs that is shared via horizontal gene transfer. These toxin-immunity protein pairs are extraordinarily diverse in sequence, and this polymorphism underpins an important mechanism of self/nonself discrimination in bacteria. This review focuses on the structures, functions, and delivery mechanisms of polymorphic toxin effectors that mediate bacterial competition

    Mechanisms and Biological Roles of Contact-Dependent Growth Inhibition Systems

    No full text
    Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiA/CdiB family of two-partner secretion proteins. CDI(+) cells bind to susceptible target bacteria and deliver a toxic effector domain derived from the carboxyl terminus of CdiA (CdiA-CT). More than 60 distinct CdiA-CT sequence types have been identified, and all CDI toxins characterized thus far display RNase, DNase, or pore-forming activities. CDI systems also encode CdiI immunity proteins, which specifically bind and inactivate cognate CdiA-CT toxins to prevent autoinhibition. CDI activity appears to be limited to target cells of the same species, suggesting that these systems play a role in competition between closely related bacteria. Recent work on the CDI system from uropathogenic Escherichia coli (UPEC 536) has revealed that its CdiA-CT toxin binds tightly to a cysteine biosynthetic enzyme (CysK) in the cytoplasm of target cells. The unanticipated complexity in the UPEC CDI pathway raises the possibility that these systems perform other functions in addition to growth inhibition. Finally, we propose that the phenomenon of CDI is more widespread than previously appreciated. Rhs (rearrangement hotspot) systems encode toxin-immunity pairs, some of which share significant sequence identity with CdiA-CT/CdiI proteins. A number of recent observations suggest that Rhs proteins mediate a distinct form of CDI

    Mechanisms and Biological Roles of Contact-Dependent Growth Inhibition Systems

    No full text
    Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiA/CdiB family of two-partner secretion proteins. CDI(+) cells bind to susceptible target bacteria and deliver a toxic effector domain derived from the carboxyl terminus of CdiA (CdiA-CT). More than 60 distinct CdiA-CT sequence types have been identified, and all CDI toxins characterized thus far display RNase, DNase, or pore-forming activities. CDI systems also encode CdiI immunity proteins, which specifically bind and inactivate cognate CdiA-CT toxins to prevent autoinhibition. CDI activity appears to be limited to target cells of the same species, suggesting that these systems play a role in competition between closely related bacteria. Recent work on the CDI system from uropathogenic Escherichia coli (UPEC 536) has revealed that its CdiA-CT toxin binds tightly to a cysteine biosynthetic enzyme (CysK) in the cytoplasm of target cells. The unanticipated complexity in the UPEC CDI pathway raises the possibility that these systems perform other functions in addition to growth inhibition. Finally, we propose that the phenomenon of CDI is more widespread than previously appreciated. Rhs (rearrangement hotspot) systems encode toxin-immunity pairs, some of which share significant sequence identity with CdiA-CT/CdiI proteins. A number of recent observations suggest that Rhs proteins mediate a distinct form of CDI
    corecore