21 research outputs found
TMCO1 is a novel target for cancer chemotherapy
Transmembrane and coiled-coil domains 1 (TMCO1) is a protein of 22 KDa highly conserved in amino acid sequence among mammalian species and functions as an endoplasmic reticulum (ER) Ca2+load-activated Ca2+channel. Homozygous frameshift mutation in TMCO1 causes distinctive craniofacial dysmorphism, skeletal anomalies, and mental retardation. However, its physiological functions are largely unknown. In this study, we found that TMCO1 was co-localized with microtubules as determined by immunohistostaining and a co-sedimentation assay. Interestingly, TMCO1 was highly expressed in the invasive front of high grade lung cancer and metastatic cancer cells of clinical specimens. To further investigate the biological role of TMCO1 in lung cancer, we knocked it down in A549 cells, a human lung adenocarcinoma cell line, by using shRNA lentiviral particles. Disruption of TMCO1 in the cells resulted in delayed microtubule polymerization and remarkably increased acetylation of -tubulin. In addition, A549 cells lacking of TMCO1 grew significantly slower than the control cells. Taken together, our findings suggest that TMCO1 may be a therapeutic target for lung cancer treatment.https://engagedscholarship.csuohio.edu/u_poster_2018/1031/thumbnail.jp
Weikangning Therapy in Functional Dyspepsia and the Protective Role of Nrf2
Functional dyspepsia (FD) is a non-organic gastro-intestinal disorder that has a marked negative impact on quality of life. Compared with conventional pharmacological therapies, the traditional Chinese medicine weikangning (WKN) is a safe and effective treatment for FD. The present study aimed to determine the molecular mechanisms underlying the efficacy of WKN. The effect of different concentrations of WKN on the proliferation of the human gastric mucosal epithelial cell line GES-1 was assessed. The optimal WKN concentration to promote cell proliferation was determined, and this concentration was used to examine the effect of WKN compared with a domperidone-treated positive control group on the antioxidant capacity of GES-1 cells. The effect of WKN treatment on the growth and antioxidant activity of GES-1 cells was also assessed following nuclear factor erythroid 2 like 2 (Nrf2) knockdown. The optimal WKN dose for promoting cell growth was determined to be 0.025 mg/ml; at this concentra-tion the expression of the antioxidant proteins glutathione S-transferase P and superoxide dismutase 2 (SOD2) were significantly elevated (
Cobalt(II) Diphenylazodioxide Complexes Induce Apoptosis in SK-HEP-1 Cells
The cobalt(II) complex salts [Co(bpy)(az)2](PF6)2 and [Co(az)4](PF6), each bearing the unusual cis-N,N\u27-diphenylazodioxide ligand, were both screened as possible anticancer agents against SK-HEP-1 liver cancer cells. Both compounds were found to induce substantial apoptosis as an increasing function of concentration and time. Measurement of apoptosis-related proteins indicated that both the extrinsic and intrinsic pathways of apoptosis were activated. The apoptotic activity induced by these salts is not displayed either by simple cobalt(II) salts or complexes or by the free nitrosobenzene ligand. Additionally, these compounds did not induce apoptosis, as assessed by poly(adenosine diphosphate-ribose) polymerase cleavage, in several other cell lines
1
1H NMR-based metabolic profiling combined with multivariate data analysis was used to explore the metabolic phenotype of functional dyspepsia (FD) in stressed rats and evaluate the intervention effects of the Chinese medicine Weikangning (WKN). After a 7-day period of model establishment, a 14-day drug administration schedule was conducted in a WKN-treated group of rats, with the model and normal control groups serving as negative controls. Based on 1H NMR spectra of urine and serum from rats, PCA, PLS-DA, and OPLS-DA were performed to identify changing metabolic profiles. According to the key metabolites determined by OPLS-DA, alterations in energy metabolism, stress-related metabolism, and gut microbiota were found in FD model rats after stress stimulation, and these alterations were restored to normal after WKN administration. This study may provide new insights into the relationship between FD and psychological stress and assist in research into the metabolic mechanisms involved in Chinese medicine
Cobalt(II) Diphenylazodioxide Complexes Induce Apoptosis in SK-HEP-1 Cells
The cobalt(II) complex salts [Co(bpy)(az)2](PF6)2 and [Co(az)4](PF6), each bearing the unusual cis-N,N\u27-diphenylazodioxide ligand, were both screened as possible anticancer agents against SK-HEP-1 liver cancer cells. Both compounds were found to induce substantial apoptosis as an increasing function of concentration and time. Measurement of apoptosis-related proteins indicated that both the extrinsic and intrinsic pathways of apoptosis were activated. The apoptotic activity induced by these salts is not displayed either by simple cobalt(II) salts or complexes or by the free nitrosobenzene ligand. Additionally, these compounds did not induce apoptosis, as assessed by poly(adenosine diphosphate-ribose) polymerase cleavage, in several other cell lines