474 research outputs found

    Non-integrability of the mixmaster universe

    Full text link
    We comment on an analysis by Contopoulos et al. which demonstrates that the governing six-dimensional Einstein equations for the mixmaster space-time metric pass the ARS or reduced Painlev\'{e} test. We note that this is the case irrespective of the value, II, of the generating Hamiltonian which is a constant of motion. For I<0I < 0 we find numerous closed orbits with two unstable eigenvalues strongly indicating that there cannot exist two additional first integrals apart from the Hamiltonian and thus that the system, at least for this case, is very likely not integrable. In addition, we present numerical evidence that the average Lyapunov exponent nevertheless vanishes. The model is thus a very interesting example of a Hamiltonian dynamical system, which is likely non-integrable yet passes the reduced Painlev\'{e} test.Comment: 11 pages LaTeX in J.Phys.A style (ioplppt.sty) + 6 PostScript figures compressed and uuencoded with uufiles. Revised version to appear in J Phys.

    Fractal Scales in a Schwarzschild Atmosphere

    Get PDF
    Recently, Glass and Krisch have extended the Vaidya radiating metric to include both a radiation fluid and a string fluid [1999 Class. Quantum Grav. vol 16, 1175]. Mass diffusion in the extended Schwarzschild atmosphere was studied. The continuous solutions of classical diffusive transport are believed to describe the envelope of underlying fractal behavior. In this work we examine the classical picture at scales on which fractal behavior might be evident.Comment: to appear in Class. Quantum Gra

    The resonance spectrum of the cusp map in the space of analytic functions

    Full text link
    We prove that the Frobenius--Perron operator UU of the cusp map F:[1,1][1,1]F:[-1,1]\to[-1,1], F(x)=12xF(x)=1-2\sqrt{|x|} (which is an approximation of the Poincar\'e section of the Lorenz attractor) has no analytic eigenfunctions corresponding to eigenvalues different from 0 and 1. We also prove that for any q(0,1)q\in(0,1) the spectrum of UU in the Hardy space in the disk \{z\in\C:|z-q|<1+q\} is the union of the segment [0,1][0,1] and some finite or countably infinite set of isolated eigenvalues of finite multiplicity.Comment: Submitted to JMP; The description of the spectrum in some Hardy spaces is adde

    Resonances of the cusp family

    Full text link
    We study a family of chaotic maps with limit cases the tent map and the cusp map (the cusp family). We discuss the spectral properties of the corresponding Frobenius--Perron operator in different function spaces including spaces of analytic functions. A numerical study of the eigenvalues and eigenfunctions is performed.Comment: 14 pages, 3 figures. Submitted to J.Phys.

    The tale of two centres

    Full text link
    We study motion in the field of two fixed centres described by a family of Einstein-dilaton-Maxwell theories. Transitions between regular and chaotic motion are observed as the dilaton coupling is varied.Comment: 20 pages, RevTeX, 7 figures included, TeX format change

    Homoclinic chaos in the dynamics of a general Bianchi IX model

    Get PDF
    The dynamics of a general Bianchi IX model with three scale factors is examined. The matter content of the model is assumed to be comoving dust plus a positive cosmological constant. The model presents a critical point of saddle-center-center type in the finite region of phase space. This critical point engenders in the phase space dynamics the topology of stable and unstable four dimensional tubes R×S3R \times S^3, where RR is a saddle direction and S3S^3 is the manifold of unstable periodic orbits in the center-center sector. A general characteristic of the dynamical flow is an oscillatory mode about orbits of an invariant plane of the dynamics which contains the critical point and a Friedmann-Robertson-Walker (FRW) singularity. We show that a pair of tubes (one stable, one unstable) emerging from the neighborhood of the critical point towards the FRW singularity have homoclinic transversal crossings. The homoclinic intersection manifold has topology R×S2R \times S^2 and is constituted of homoclinic orbits which are bi-asymptotic to the S3S^3 center-center manifold. This is an invariant signature of chaos in the model, and produces chaotic sets in phase space. The model also presents an asymptotic DeSitter attractor at infinity and initial conditions sets are shown to have fractal basin boundaries connected to the escape into the DeSitter configuration (escape into inflation), characterizing the critical point as a chaotic scatterer.Comment: 11 pages, 6 ps figures. Accepted for publication in Phys. Rev.

    Accelerating cycle expansions by dynamical conjugacy

    Full text link
    Periodic orbit theory provides two important functions---the dynamical zeta function and the spectral determinant for the calculation of dynamical averages in a nonlinear system. Their cycle expansions converge rapidly when the system is uniformly hyperbolic but greatly slowed down in the presence of non-hyperbolicity. We find that the slow convergence can be associated with singularities in the natural measure. A properly designed coordinate transformation may remove these singularities and results in a dynamically conjugate system where fast convergence is restored. The technique is successfully demonstrated on several examples of one-dimensional maps and some remaining challenges are discussed

    Chaos in Static Axisymmetric Spacetimes I : Vacuum Case

    Full text link
    We study the motion of test particle in static axisymmetric vacuum spacetimes and discuss two criteria for strong chaos to occur: (1) a local instability measured by the Weyl curvature, and (2) a tangle of a homoclinic orbit, which is closely related to an unstable periodic orbit in general relativity. We analyze several static axisymmetric spacetimes and find that the first criterion is a sufficient condition for chaos, at least qualitatively. Although some test particles which do not satisfy the first criterion show chaotic behavior in some spacetimes, these can be accounted for the second criterion.Comment: More comments for the quantitative estimation of chaos are added, and some inappropriate terms are changed. This will appear on Class. Quant. Gra

    New Algorithm for Mixmaster Dynamics

    Get PDF
    We present a new numerical algorithm for evolving the Mixmaster spacetimes. By using symplectic integration techniques to take advantage of the exact Taub solution for the scattering between asymptotic Kasner regimes, we evolve these spacetimes with higher accuracy using much larger time steps than previously possible. The longer Mixmaster evolution thus allowed enables detailed comparison with the Belinskii, Khalatnikov, Lifshitz (BKL) approximate Mixmaster dynamics. In particular, we show that errors between the BKL prediction and the measured parameters early in the simulation can be eliminated by relaxing the BKL assumptions to yield an improved map. The improved map has different predictions for vacuum Bianchi Type IX and magnetic Bianchi Type VI0_0 Mixmaster models which are clearly matched in the simulation.Comment: 12 pages, Revtex, 4 eps figure

    Nodal dynamics, not degree distributions, determine the structural controllability of complex networks

    Get PDF
    Structural controllability has been proposed as an analytical framework for making predictions regarding the control of complex networks across myriad disciplines in the physical and life sciences (Liu et al., Nature:473(7346):167-173, 2011). Although the integration of control theory and network analysis is important, we argue that the application of the structural controllability framework to most if not all real-world networks leads to the conclusion that a single control input, applied to the power dominating set (PDS), is all that is needed for structural controllability. This result is consistent with the well-known fact that controllability and its dual observability are generic properties of systems. We argue that more important than issues of structural controllability are the questions of whether a system is almost uncontrollable, whether it is almost unobservable, and whether it possesses almost pole-zero cancellations.Comment: 1 Figures, 6 page
    corecore