474 research outputs found
Non-integrability of the mixmaster universe
We comment on an analysis by Contopoulos et al. which demonstrates that the
governing six-dimensional Einstein equations for the mixmaster space-time
metric pass the ARS or reduced Painlev\'{e} test. We note that this is the case
irrespective of the value, , of the generating Hamiltonian which is a
constant of motion. For we find numerous closed orbits with two
unstable eigenvalues strongly indicating that there cannot exist two additional
first integrals apart from the Hamiltonian and thus that the system, at least
for this case, is very likely not integrable. In addition, we present numerical
evidence that the average Lyapunov exponent nevertheless vanishes. The model is
thus a very interesting example of a Hamiltonian dynamical system, which is
likely non-integrable yet passes the reduced Painlev\'{e} test.Comment: 11 pages LaTeX in J.Phys.A style (ioplppt.sty) + 6 PostScript figures
compressed and uuencoded with uufiles. Revised version to appear in J Phys.
Fractal Scales in a Schwarzschild Atmosphere
Recently, Glass and Krisch have extended the Vaidya radiating metric to
include both a radiation fluid and a string fluid [1999 Class. Quantum Grav.
vol 16, 1175]. Mass diffusion in the extended Schwarzschild atmosphere was
studied. The continuous solutions of classical diffusive transport are believed
to describe the envelope of underlying fractal behavior. In this work we
examine the classical picture at scales on which fractal behavior might be
evident.Comment: to appear in Class. Quantum Gra
The resonance spectrum of the cusp map in the space of analytic functions
We prove that the Frobenius--Perron operator of the cusp map
, (which is an approximation of the
Poincar\'e section of the Lorenz attractor) has no analytic eigenfunctions
corresponding to eigenvalues different from 0 and 1. We also prove that for any
the spectrum of in the Hardy space in the disk
\{z\in\C:|z-q|<1+q\} is the union of the segment and some finite or
countably infinite set of isolated eigenvalues of finite multiplicity.Comment: Submitted to JMP; The description of the spectrum in some Hardy
spaces is adde
Resonances of the cusp family
We study a family of chaotic maps with limit cases the tent map and the cusp
map (the cusp family). We discuss the spectral properties of the corresponding
Frobenius--Perron operator in different function spaces including spaces of
analytic functions. A numerical study of the eigenvalues and eigenfunctions is
performed.Comment: 14 pages, 3 figures. Submitted to J.Phys.
The tale of two centres
We study motion in the field of two fixed centres described by a family of
Einstein-dilaton-Maxwell theories. Transitions between regular and chaotic
motion are observed as the dilaton coupling is varied.Comment: 20 pages, RevTeX, 7 figures included, TeX format change
Homoclinic chaos in the dynamics of a general Bianchi IX model
The dynamics of a general Bianchi IX model with three scale factors is
examined. The matter content of the model is assumed to be comoving dust plus a
positive cosmological constant. The model presents a critical point of
saddle-center-center type in the finite region of phase space. This critical
point engenders in the phase space dynamics the topology of stable and unstable
four dimensional tubes , where is a saddle direction and
is the manifold of unstable periodic orbits in the center-center sector.
A general characteristic of the dynamical flow is an oscillatory mode about
orbits of an invariant plane of the dynamics which contains the critical point
and a Friedmann-Robertson-Walker (FRW) singularity. We show that a pair of
tubes (one stable, one unstable) emerging from the neighborhood of the critical
point towards the FRW singularity have homoclinic transversal crossings. The
homoclinic intersection manifold has topology and is constituted
of homoclinic orbits which are bi-asymptotic to the center-center
manifold. This is an invariant signature of chaos in the model, and produces
chaotic sets in phase space. The model also presents an asymptotic DeSitter
attractor at infinity and initial conditions sets are shown to have fractal
basin boundaries connected to the escape into the DeSitter configuration
(escape into inflation), characterizing the critical point as a chaotic
scatterer.Comment: 11 pages, 6 ps figures. Accepted for publication in Phys. Rev.
Accelerating cycle expansions by dynamical conjugacy
Periodic orbit theory provides two important functions---the dynamical zeta
function and the spectral determinant for the calculation of dynamical averages
in a nonlinear system. Their cycle expansions converge rapidly when the system
is uniformly hyperbolic but greatly slowed down in the presence of
non-hyperbolicity. We find that the slow convergence can be associated with
singularities in the natural measure. A properly designed coordinate
transformation may remove these singularities and results in a dynamically
conjugate system where fast convergence is restored. The technique is
successfully demonstrated on several examples of one-dimensional maps and some
remaining challenges are discussed
Chaos in Static Axisymmetric Spacetimes I : Vacuum Case
We study the motion of test particle in static axisymmetric vacuum spacetimes
and discuss two criteria for strong chaos to occur: (1) a local instability
measured by the Weyl curvature, and (2) a tangle of a homoclinic orbit, which
is closely related to an unstable periodic orbit in general relativity. We
analyze several static axisymmetric spacetimes and find that the first
criterion is a sufficient condition for chaos, at least qualitatively. Although
some test particles which do not satisfy the first criterion show chaotic
behavior in some spacetimes, these can be accounted for the second criterion.Comment: More comments for the quantitative estimation of chaos are added, and
some inappropriate terms are changed. This will appear on Class. Quant. Gra
New Algorithm for Mixmaster Dynamics
We present a new numerical algorithm for evolving the Mixmaster spacetimes.
By using symplectic integration techniques to take advantage of the exact Taub
solution for the scattering between asymptotic Kasner regimes, we evolve these
spacetimes with higher accuracy using much larger time steps than previously
possible. The longer Mixmaster evolution thus allowed enables detailed
comparison with the Belinskii, Khalatnikov, Lifshitz (BKL) approximate
Mixmaster dynamics. In particular, we show that errors between the BKL
prediction and the measured parameters early in the simulation can be
eliminated by relaxing the BKL assumptions to yield an improved map. The
improved map has different predictions for vacuum Bianchi Type IX and magnetic
Bianchi Type VI Mixmaster models which are clearly matched in the
simulation.Comment: 12 pages, Revtex, 4 eps figure
Nodal dynamics, not degree distributions, determine the structural controllability of complex networks
Structural controllability has been proposed as an analytical framework for
making predictions regarding the control of complex networks across myriad
disciplines in the physical and life sciences (Liu et al.,
Nature:473(7346):167-173, 2011). Although the integration of control theory and
network analysis is important, we argue that the application of the structural
controllability framework to most if not all real-world networks leads to the
conclusion that a single control input, applied to the power dominating set
(PDS), is all that is needed for structural controllability. This result is
consistent with the well-known fact that controllability and its dual
observability are generic properties of systems. We argue that more important
than issues of structural controllability are the questions of whether a system
is almost uncontrollable, whether it is almost unobservable, and whether it
possesses almost pole-zero cancellations.Comment: 1 Figures, 6 page
- …
