4,756 research outputs found
Probing a r-nmodification of the Newtonian potential with exoplanets
The growing availability of increasingly accurate data on transiting exoplanets suggests the possibility of using these systems as possible testbeds for modified models of gravity. In particular, we suggest that the post-Keplerian (pK) dynamical effects from the perturbations of the Newtonian potential falling off as the square or the cube of the distance from the mass of the host star break the degeneracy of the anomalistic, draconitic and sidereal periods. The latter are characteristic temporal intervals in the motion of a binary system, and all coincide in the purely Keplerian case. We work out their analytical expressions in presence of the aforementioned perturbations to yield preliminary insights on the potential of the method proposed for constraining the modified models of gravity considered. A comparison with other results existing in the literature is made
Charged Particle Dynamics in the Field of a Slowly Rotating Compact Star
We study the dynamics of a charged particle in the field of a slowly rotating
compact star in the gravitoelectromagnetic approximation to the geodesic
equation . The star is assumed to be surrounded by an ideal, highly conducting
plasma (taken as a magnetohydrodynamic fluid) with a stationary, axially
symmetric electromagnetic field. The general relativistic Maxwell equations are
solved to obtain the effects of the background spacetime on the electromagnetic
field in the linearized Kerr spacetime. The equations of motion are then set up
and solved numerically to incorporate the gravitational as well as the
electromagnetic effects. The analysis shows that in the slow rotation
approximation the frame dragging effects on the electromagnetic field are
absent. However the particle is directly effected by the rotating gravitational
source such that close to the star the gravitational and electromagnetic field
produce contrary effects on the particle's trajectory.Comment: 10 pages, 6 figures in B & W PostScript Forma
Gravitomagnetism in superconductors and compact stars
There are three experimentally observed effects in rotating superconductors
that are so far unexplained. Some authors have tried to interpret such a
phenomena as possible new gravitational properties of coherent quantum systems:
in particular, they suggest that the gravitomagnetic field of that kind of
matter may be many orders of magnitude stronger than the one expected in the
standard theory. Here I show that this interpretation would be in conflict with
the common belief that neutron stars have neutrons in superfluid state and
protons in superconductive one.Comment: 9 pages, no figur
Einstein-Cartan theory as a theory of defects in space-time
The Einstein-Cartan theory of gravitation and the classical theory of defects
in an elastic medium are presented and compared. The former is an extension of
general relativity and refers to four-dimensional space-time, while we
introduce the latter as a description of the equilibrium state of a
three-dimensional continuum. Despite these important differences, an analogy is
built on their common geometrical foundations, and it is shown that a
space-time with curvature and torsion can be considered as a state of a
four-dimensional continuum containing defects. This formal analogy is useful
for illustrating the geometrical concept of torsion by applying it to concrete
physical problems. Moreover, the presentation of these theories using a common
geometrical basis allows a deeper understanding of their foundations.Comment: 18 pages, 7 EPS figures, RevTeX4, to appear in the American Journal
of Physics, revised version with typos correcte
Efficiency optimization for Atomic Frequency Comb storage
We study the efficiency of the Atomic Frequency Comb storage protocol. We
show that for a given optical depth, the preparation procedure can be optimize
to significantly improve the retrieval. Our prediction is well supported by the
experimental implementation of the protocol in a \TMYAG crystal. We observe a
net gain in efficiency from 10% to 17% by applying the optimized preparation
procedure. In the perspective of high bandwidth storage, we investigate the
protocol under different magnetic fields. We analyze the effect of the Zeeman
and superhyperfine interaction
Gravitomagnetic Resonance Shift due to a Slowly Rotating Compact Star
The effect of a slowly rotating mass on a forced harmonic oscillator with two
degrees of freedom is studied in the weak field approximation. It is found that
according to the general theory of relativity there is a shift in the resonat
frequency of the oscillator which depends on the density and rotational
frequency of the gravitational source. The proposed shift is quite small under
normal physical situations however it is estimated that for compact x-ray
sources such as white dwarfs, pulsars, and neutron stars the shift is quite
appreciable.Comment: 8 pages, 2 figures, Accepted for Publication in Inter. Journal of
Modern Physics
Space geometry of rotating platforms: an operational approach
We study the space geometry of a rotating disk both from a theoretical and operational approach, in particular we give a precise definition of the space of the disk, which is not clearly defined in the literature. To this end we define an extended 3-space, which we call relative space: it is recognized as the only space having an actual physical meaning from an operational point of view, and it is identified as the 'physical space of the rotating platform'. Then, the geometry of the space of the disk turns out to be non Euclidean, according to the early Einstein's intuition; in particular the Born metric is recovered, in a clear and self consistent context. Furthermore, the relativistic kinematics reveals to be self consistent, and able to solve the Ehrenfest's paradox without any need of dynamical considerations or ad hoc assumptions
- …