4,553 research outputs found

    Media devices in pre-school children: the recommendations of the Italian pediatric society

    Get PDF
    BACKGROUND: Young children are too often exposed to mobile devices (MD) and most of them had their own device. The adverse effects of a early and prolonged exposure to digital technology on pre-school children has been described by several studies. Aim of the study is to analyze the consequences of MD exposure in pre-school children. METHODS: We analyzed the documented effects of media exposure on children's mental and physical health. RESULTS: According to recent studies, MD may interfere with learning, children development, well being, sleep, sight, listening, caregiver-child relationship. DISCUSSION: Pediatricians should be aware of both the beneficial and side effects of MD and give advice to the families, according to children's age. CONCLUSION: In according to literature, the Italian Pediatric Society suggest that the media device exposure in childhood should be modulated by supervisors

    Space geometry of rotating platforms: an operational approach

    Get PDF
    We study the space geometry of a rotating disk both from a theoretical and operational approach, in particular we give a precise definition of the space of the disk, which is not clearly defined in the literature. To this end we define an extended 3-space, which we call relative space: it is recognized as the only space having an actual physical meaning from an operational point of view, and it is identified as the 'physical space of the rotating platform'. Then, the geometry of the space of the disk turns out to be non Euclidean, according to the early Einstein's intuition; in particular the Born metric is recovered, in a clear and self consistent context. Furthermore, the relativistic kinematics reveals to be self consistent, and able to solve the Ehrenfest's paradox without any need of dynamical considerations or ad hoc assumptions

    Light-cone fluctuations and the renormalized stress tensor of a massless scalar field

    Full text link
    We investigate the effects of light-cone fluctuations over the renormalized vacuum expectation value of the stress-energy tensor of a real massless minimally coupled scalar field defined in a (d+1d+1)-dimensional flat space-time with topology RĂ—Sd{\cal R}\times {\cal S}^d. For modeling the influence of light-cone fluctuations over the quantum field, we consider a random Klein-Gordon equation. We study the case of centered Gaussian processes. After taking into account all the realizations of the random processes, we present the correction caused by random fluctuations. The averaged renormalized vacuum expectation value of the stress-energy associated with the scalar field is presented

    The Lense-Thirring effect in the Jovian system of the Galilean satellites and its measurability

    Full text link
    In this paper we investigate the possibility of measuring the post-Newtonian general relativistic gravitomagnetic Lense-Thirring effect in the Jovian system of its Galilean satellites Io, Europa, Ganymede and Callisto in view of recent developments in processing and modelling their optical observations spanning a large time interval (125 years). The present day best observations have an accuracy between several kilometers to few tens of kilometers, which is just the order of magnitude of the Lense-Thirring shifts of the orbits of the Galilean satellites over almost a century. From a comparison between analytical development and numerical integration it turns out that, unfortunately, most of the secular component of the gravitomagnetic signature is removed in the process of fitting the initial conditions. Indeed, an estimation of the magnitude of the Lense-Thirring effect in the ephemerides residuals is given; the resulting residuals have a maximum magnitude of 20 meters only (over 125 years).Comment: Latex, 10 pages, 4 tables, 3 figures, 27 references. Invited paper for a Special Issue of Int. J. Mod. Phys. D on the Lense-Thirring effect, D. Grumiller edito

    Doppler Effects from Bending of Light Rays in Curved Space-Times

    Get PDF
    We study Doppler effects in curved space-time, i.e. the frequency shifts induced on electromagnetic signals propagating in the gravitational field. In particular, we focus on the frequency shift due to the bending of light rays in weak gravitational fields. We consider, using the PPN formalism, the gravitational field of an axially symmetric distribution of mass. The zeroth order, i.e. the sphere, is studied then passing to the contribution of the quadrupole moment, and finally to the case of a rotating source. We give numerical estimates for situations of physical interest, and by a very preliminary analysis, we argue that analyzing the Doppler effect could lead, in principle, in the foreseeable future, to the measurement of the quadrupole moment of the giant planets of the Solar System.Comment: 16 pages, 2 EPS figures; to appear in the International Journal of Modern Physics

    Chaotic Accretion in a Non-Stationary Electromagnetic Field of a Slowly Rotating Compact Star

    Get PDF
    We investigate charge accretion in vicinity of a slowly rotating compact star with a non-stationary electromagnetic field. Exact solutions to the general relativistic Maxwell equations are obtained for a star formed of a highly degenerate plasma with a gravitational field given by the linearized Kerr metric. These solutions are used to formulate and then to study numerically the equations of motion for a charged particle in star's vicinity using the gravitoelectromagnetic force law. The analysis shows that close to the star charge accretion does not always remain ordered. It is found that the magnetic field plays the dominant role in the onset of chaos near the star's surface.Comment: 9 pages, 4 figure

    Minor rural building heritage and territorial features in local action group sud est barese area (Southern Italy)

    Get PDF
    In Apulia, minor rural buildings are normally affected by intense forms of abandonment and decay. These minor constructions are often reused in ways that are not in line with both their own characteristics and the territorial context that encloses them. These forms of deterioration often lead to disappearance of this heritage. This study is focused on the analysis of the minor rural building heritage and its relationship with the actual territory context of the Local Action Group Sud Est Barese (LAG SEB), made up of nine municipalities. The official cartography of Military Geographic Institute (IGM, 1:25 000), the Regional Technical Map (CTR, 1:5 000), the Informative Territorial System (SIT Puglia) database, and the Geographic Information System (GIS) software ArcMap ArcGis 10.5 were used in order to constitute the base cartography. To obtain information about localization of the rural buildings, IGM cartography has been used due to the greater number of contents related to the classification of buildings. Successively, the overlapping of IGM and CTR map data and the comparison of them with the digital orthophoto were useful to verify whether the buildings listed on IGM cartography still exist. All main territorial features were analyzed using datasets obtained from IGM, CTR and SIT Puglia databases. This work allowed to investigate the possible relationships between the typology and the distribution of minor rural buildings and the major territorial characteristics, such as land use, road network, orography, and karst formations. It was highlighted that, although all nine municipalities examined fall under the same LAG, these are very different from the point of view of territorial peculiarities and the use and enhancement of resources. Rural buildings in their territorial context near the coast show more diversified potentials, as these areas include different realities (urban centers, tourist and seasonal residential areas, production areas, etc.), while the innermost buildings are located in municipalities with a predominantly productive destination. The obtained results represent useful information to outline intervention policies, the implementation of which would serve to attempt to recover the building structures, or improve the quality and way of using them

    High-resolution DCE-MRI of the pituitary gland using radial k-space acquisition with compressed sensing reconstruction

    Get PDF
    BACKGROUND AND PURPOSE: The pituitary gland is located outside of the blood-brain barrier. Dynamic T1 weighted contrast enhanced sequence is considered to be the gold standard to evaluate this region. However, it does not allow assessment of intrinsic permeability properties of the gland. Our aim was to demonstrate the utility of radial volumetric interpolated brain examination with the golden-angle radial sparse parallel technique to evaluate permeability characteristics of the individual components (anterior and posterior gland and the median eminence) of the pituitary gland and areas of differential enhancement and to optimize the study acquisition time. MATERIALS AND METHODS: A retrospective study was performed in 52 patients (group 1, 25 patients with normal pituitary glands; and group 2, 27 patients with a known diagnosis of microadenoma). Radial volumetric interpolated brain examination sequences with goldenangle radial sparse parallel technique were evaluated with an ROI-based method to obtain signal-time curves and permeability measures of individual normal structures within the pituitary gland and areas of differential enhancement. Statistical analyses were performed to assess differences in the permeability parameters of these individual regions and optimize the study acquisition time. RESULTS: Signal-time curves from the posterior pituitary gland and median eminence demonstrated a faster wash-in and time of maximum enhancement with a lower peak of enhancement compared with the anterior pituitary gland (P .005). Time-optimization analysis demonstrated that 120 seconds is ideal for dynamic pituitary gland evaluation. In the absence of a clinical history, differences in the signal-time curves allow easy distinction between a simple cyst and a microadenoma. CONCLUSIONS: This retrospective study confirms the ability of the golden-angle radial sparse parallel technique to evaluate the permeability characteristics of the pituitary gland and establishes 120 seconds as the ideal acquisition time for dynamic pituitary gland imaging

    Short-term effects of focal muscle vibration on motor recovery after acute stroke: a pilot randomized sham-controlled study

    Get PDF
    Repetitive focal muscle vibration (rMV) is known to promote neural plasticity and long-lasting motor recovery in chronic stroke patients. Those structural and functional changes within the motor network underlying motor recovery occur in the very first hours after stroke. Nonetheless, to our knowledge, no rMV-based studies have been carried out in acute stroke patients so far, and the clinical benefit of rMV in this phase of stroke is yet to be determined. The aim of this randomized double-blind sham-controlled study is to investigate the short-term effect of rMV on motor recovery in acute stroke patients. Out of 22 acute stroke patients, 10 were treated with the rMV (vibration group–VG), while 12 underwent the sham treatment (control group–CG). Both treatments were carried out for 3 consecutive days, starting within 72 h of stroke onset; each daily session consisted of three 10-min treatments (for each treated limb), interspersed with a 1-min interval. rMV was delivered using a specific device (Cro®System, NEMOCO srl, Italy). The transducer was applied perpendicular to the target muscle's belly, near its distal tendon insertion, generating a 0.2–0.5 mm peak-to-peak sinusoidal displacement at a frequency of 100 Hz. All participants also underwent a daily standard rehabilitation program. The study protocol underwent local ethics committee approval (ClinicalTrial.gov NCT03697525) and written informed consent was obtained from all of the participants. With regard to the different pre-treatment clinical statuses, VG patients showed significant clinical improvement with respect to CG-treated patients among the NIHSS (p < 0.001), Fugl-Meyer (p = 0.001), and Motricity Index (p < 0.001) scores. In addition, when the upper and lower limb scales scores were compared between the two groups, VG patients were found to have a better clinical improvement at all the clinical end points. This study provides the first evidence that rMV is able to improve the motor outcome in a cohort of acute stroke patients, regardless of the pretreatment clinical status. Being a safe and well-tolerated intervention, which is easy to perform at the bedside, rMV may represent a valid complementary non-pharmacological therapy to promote motor recovery in acute stroke patients
    • …
    corecore