2,067 research outputs found

    On the ground state of gapless two flavor color superconductors

    Get PDF
    This paper is devoted to the study of some aspects of the instability of two flavor color superconductive quark matter. We find that, beside color condensates, the Goldstone boson related to the breaking of U(1)AU(1)_A suffers of a velocity instability. We relate this wrong sign problem, which implies the existence of a Goldstone current in the ground state or of gluonic condensation, to the negative squared Meissner mass of the 8th8^{th} gluon in the g2SC phase. Moreover we investigate the Meissner masses of the gluons and the squared velocity of the Goldstone in the multiple plane wave LOFF states, arguing that in such phases both the chromo-magnetic instability and the velocity instability are most probably removed. We also do not expect Higgs instability in such multiple plane wave LOFF. The true vacuum of gapless two flavor superconductors is thus expected to be a multiple plane wave LOFF state.Comment: 16 pages, RevTe3X4 styl

    A New Fast Silicon Photomultiplier Photometer

    Get PDF
    The realization of low-cost instruments with high technical performance is a goal which deserves some efforts in an epoch of fast technological developments: indeed such instruments can be easily reproduced and therefore allow to open new research programs in several Observatories. We realized a fast optical photometer based on the SiPM technology, using commercially available modules. Using low-cost components we have developed a custom electronic chain to extract the signal produced by a commercial MPPC module produced by Hamamatsu, in order to obtain sub millisecond sampling of the light curve of astronomical sources, typically pulsars. In the early February 2011 we observed the Crab Pulsar at the Cassini telescope with our prototype photometer, deriving its period, power spectrum and shape of its light curve in very good agreement with the results obtained in the past with other instruments.Comment: Accepted for Publications of the Astronomical Society of Pacific (PASP), 8 pages, 8 figure

    Evaluating the phase diagram of superconductors with asymmetric spin populations

    Full text link
    The phase diagram of a non-relativistic fermionic system with imbalanced state populations interacting via a short-range S-wave attractive interaction is analyzed in the mean field approximation. We determine the energetically favored state for different values of the mismatch between the two Fermi spheres in the weak and strong coupling regime considering both homogeneous and non-homogeneous superconductive states. We find that the homogeneous superconductive phase persists for values of the population imbalance that increase with increasing coupling strength. In the strong coupling regime and for large population differences the energetically stable homogeneous phase is characterized by one gapless mode. We also find that the inhomogeneous superconductive phase characterized by the condensate Δ(x)Δ exp(iqx)\Delta({\bf x}) \sim \Delta~\exp{(i \bf{q \cdot x})} is energetically favored in a range of values of the chemical potential mismatch that shrinks to zero in the strong coupling regime.Comment: 9 pages, 5 figure

    Superfluid and Pseudo-Goldstone Modes in Three Flavor Crystalline Color Superconductivity

    Full text link
    We study the bosonic excitations in the favorite cubic three flavor crystalline LOFF phases of QCD. We calculate in the Ginzburg-Landau approximation the masses of the eight pseudo Nambu-Goldstone Bosons (NGB) present in the low energy theory. We also compute the decay constants of the massless NGB Goldstones associated to superfluidity as well as those of the eight pseudo NGB. Differently from the corresponding situation in the Color-Flavor-Locking phase, we find that meson condensation phases are not expected in the present scenario.Comment: 10 pages, RevTeX4 class. Section IIIA enlarged, to appear on Phys. Rev.

    Chiral magnetic effect in the PNJL model

    Get PDF
    We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential μ5\mu_5 which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of μ5\mu_5 on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.Comment: Some reference added. Minor revisions. One figure added. To appear on Phys. Rev.

    Magnetic Susceptibility of the Quark Condensate and Polarization from Chiral Models

    Full text link
    We compute the magnetic susceptibility of the quark condensate and the polarization of quarks at zero temperature and in a uniform magnetic background. Our theoretical framework consists of two chiral models that allow to treat self-consistently the spontaneous breaking of chiral symmetry: the linear σ\sigma-model coupled to quarks, dubbed quark-meson model, and the Nambu-Jona-Lasinio model. We also perform analytic estimates of the same quantities within the renormalized quark-meson model, both in the regimes of weak and strong fields. Our numerical results are in agreement with the recent literature; moreover, we confirm previous Lattice findings, related to the saturation of the polarization at large fields.Comment: 13 pages, 4 figure

    Chiral magnetic effect in the PNJL model

    Get PDF
    We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential μ5\mu_5 which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of μ5\mu_5 on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.Comment: Some reference added. Minor revisions. One figure added. To appear on Phys. Rev.

    Porting Decision Tree Algorithms to Multicore using FastFlow

    Full text link
    The whole computer hardware industry embraced multicores. For these machines, the extreme optimisation of sequential algorithms is no longer sufficient to squeeze the real machine power, which can be only exploited via thread-level parallelism. Decision tree algorithms exhibit natural concurrency that makes them suitable to be parallelised. This paper presents an approach for easy-yet-efficient porting of an implementation of the C4.5 algorithm on multicores. The parallel porting requires minimal changes to the original sequential code, and it is able to exploit up to 7X speedup on an Intel dual-quad core machine.Comment: 18 pages + cove
    corecore