3 research outputs found

    Collagen XIX Alpha 1 improves prognosis in amyotrophic lateral sclerosis

    Get PDF
    The identification of more reliable diagnostic or prognostic biomarkers in age-related neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), is urgently needed. The objective in this study was to identify more reliable prognostic biomarkers of ALS mirroring neurodegeneration that could be of help in clinical trials. A total of 268 participants from three cohorts were included in this study. The muscle and blood cohorts were analyzed in two cross-sectional studies, while the serial blood cohort was analyzed in a longitudinal study at 6-monthly intervals. Fifteen target genes and fourteen proteins involved in muscle physiology and differentiation, metabolic processes and neuromuscular junction dismantlement were studied in the three cohorts. In the muscle biopsy cohort, the risk for a higher mortality in an ALS patient that showed high Collagen type XIX, alpha 1 (COL19A1) protein levels and a fast progression of the disease was 70.5% (P < 0.05), while in the blood cohort, this risk was 20% (P < 0.01). In the serial blood cohort, the linear mixed model analysis showed a significant association between increasing COL19A1 gene levels along disease progression and a faster progression during the follow-up period of 24 months (P < 0.05). Additionally, higher COL19A1 levels and a faster progression increased 17.9% the mortality risk (P < 0.01). We provide new evidence that COL19A1 can be considered a prognostic biomarker that could help the selection of homogeneous groups of patients for upcoming clinical trial and may be pointed out as a promising therapeutic target in ALS

    Pathogenetic and Prognostic Implications of Increased Mitochondrial Content in Multiple Myeloma

    Get PDF
    Many studies over the last 20 years have investigated the role of mitochondrial DNA (mtDNA) alterations in carcinogenesis. However, the status of the mtDNACN in MM and its implication in the pathogenesis of the disease remains unclear. We examined changes in plasma cell mtDNACN across different stages of MM by applying RT-PCR and high-throughput sequencing analysis. We observed a significant increase in the average mtDNACN in myeloma cells compared with healthy plasma cells (157 vs. 40 copies; p = 0.02). We also found an increase in mtDNACN in SMM and newly diagnosed MM (NDMM) paired samples and in consecutive relapses in the same patient. Survival analysis revealed the negative impact of a high mtDNACN in progression-free survival in NDMM (p = 0.005). Additionally, we confirmed the higher expression of mitochondrial biogenesis regulator genes in myeloma cells than in healthy plasma cells and we detected single nucleotide variants in several genes involved in mtDNA replication. Finally, we found that there was molecular similarity between “rapidly-progressing SMM” and MM regarding mtDNACN. Our data provide evidence that malignant transformation of myeloma cells involves the activation of mitochondrial biogenesis, resulting in increased mtDNA levels, and highlights vulnerabilities and potential therapeutic targets in the treatment of MM. Accordingly, mtDNACN tracking might guide clinical decision-making and management of complex entities such as high-risk SMM

    CNL and aCML should be considered as single entity based on molecular profiles and outcomes

    Get PDF
    Chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) are rare myeloid disorders that are challenging with regard to diagnosis and clinical management. To study the similarities and differences of these disorders we undertook a multi-center international study of one of the largest case series (CNL, n=24; aCML, n=37 cases, respectively), focusing on the clinical and mutational profiles (n=53 with molecular data) of these diseases. We found no differences in clinical presentation or outcomes between both entities. As previously described, both CNL and aCML share a complex mutational profile with mutations in genes involved in epigenetic regulation, splicing and signaling pathways. Apart from CSF3R, only EZH2 and TET2 were differentially mutated between them. The molecular profiles support the notion of CNL and aCML being a continuum of the same disease that may fit best within the myelodysplastic/myeloproliferative neoplasms (MDS/MPN). We identified four high-risk mutated genes, specifically CEBPA (ÎČ=2.26, HR=9.54, p=0.003), EZH2 (ÎČ=1.12, HR=3.062, p=0.009), NRAS (ÎČ=1.29, HR=3.63, p=0.048) and U2AF1 (ÎČ=1.75, HR=5.74, p=0.013) by multivariate analysis. Our findings underscore the relevance of molecular-risk classification in CNL/aCML as well as the importance of CSF3R mutations in these diseases.</p
    corecore