9 research outputs found

    Process intensification in photocatalytic decomposition of formic acid over a TiO2 catalyst by forced periodic modulation of concentration, temperature, flowrate and light intensity

    Get PDF
    The effect of forced periodic modulation of several input parameters on the rate of photocatalytic decomposition of formic acid over a TiO2 thin film catalyst has been investigated in a continuously stirred tank reactor. The kinetic model was adopted based on the literature and it includes acid adsorption, desorption steps, the formation of photocatalytic active sites and decomposition of the adsorbed species over the active titania sites. A reactor model was developed that describes mass balances of reactive species. The analysis of the reactor was performed with a computer-aided nonlinear frequency response method. Initially, the effect of amplitude and frequency of four input parameters (flowrate, acid concentration, temperature and light intensity) were studied. All single inputs provided only a minor improvement, which did not exceed 4%. However, a modulation of two input parameters, inlet flowrate and the acid molar fraction, considerably improved the acid conversion from 80 to 96%. This is equivalent to a factor of two increase in residence time at steady-state operation at the same temperature and acid concentration

    Non-thermal plasma for process and energy intensification in dry reforming of methane

    Get PDF
    Plasma-assisted dry reforming of methane (DRM) is considered as a potential way to convert natural gas into fuels and chemicals under near ambient temperature and pressure; particularly for distributed processes based on renewable energy. Both catalytic and photocatalytic technologies have been applied for DRM to investigate the CH4 conversion and the energy efficiency of the process. For conventional catalysis; metaldoped Ni-based catalysts are proposed as a leading vector for further development. However; coke deposition leads to fast deactivation of catalysts which limits the catalyst lifetime. Photocatalysis in combination with non-thermal plasma (NTP), on the other hand; is an enabling technology to convert CH4 to more reactive intermediates. Placing the catalyst directly in the plasma zone or using post-plasma photocatalysis could generate a synergistic effect to increase the formation of the desired products. In this review; the recent progress in the area of NTP-(photo)catalysis applications for DRM has been described; with an in-depth discussion of novel plasma reactor types and operational conditions including employment of ferroelectric materials and nanosecond-pulse discharges. Finally, recent developments in the area of optical diagnostic tools for NTP, such as optical emission spectroscopy (OES), in-situ FTIR, and tunable diode laser absorption spectroscopy (TDLAS), are reviewed

    Non-Thermal Plasma for Process and Energy Intensification in Dry Reforming of Methane

    No full text
    Plasma-assisted dry reforming of methane (DRM) is considered as a potential way to convert natural gas into fuels and chemicals under near ambient temperature and pressure; particularly for distributed processes based on renewable energy. Both catalytic and photocatalytic technologies have been applied for DRM to investigate the CH4 conversion and the energy efficiency of the process. For conventional catalysis; metaldoped Ni-based catalysts are proposed as a leading vector for further development. However; coke deposition leads to fast deactivation of catalysts which limits the catalyst lifetime. Photocatalysis in combination with non-thermal plasma (NTP), on the other hand; is an enabling technology to convert CH4 to more reactive intermediates. Placing the catalyst directly in the plasma zone or using post-plasma photocatalysis could generate a synergistic effect to increase the formation of the desired products. In this review; the recent progress in the area of NTP-(photo)catalysis applications for DRM has been described; with an in-depth discussion of novel plasma reactor types and operational conditions including employment of ferroelectric materials and nanosecond-pulse discharges. Finally, recent developments in the area of optical diagnostic tools for NTP, such as optical emission spectroscopy (OES), in-situ FTIR, and tunable diode laser absorption spectroscopy (TDLAS), are reviewed

    Intensification of Droplet Disintegration for Liquid–Liquid Systems in a Pulsating Flow Type Apparatus by Adding an Inert Gas

    No full text
    Experimental studies have revealed that the introduction of a small amount (0.5% by volume) of permanent and chemically inert gas bubbles leads to the intensification of droplets disintegration in a liquid–liquid system (emulsification) in a pulsating flow type apparatus. The liquids used were water (continuous phase) and oil (dispersed phase) at room temperature, and nitrogen was used as a gas. The gas hold-up φin was varied in the range of 0% to 4%. The volume fraction of the dispersed phase (oil) was 1% with respect to the continuous phase. The size of the oil droplets was determined by microphotographs; at least 600 drops were photographed in each experiment. The optimal gas hold-up in terms of the highest interfacial area (for the studied conditions) was found to be 0.5%, at which value the droplets’ Sauter mean diameter d32 decreased 1.88 times, and the maximum droplet size decreased 1.3 times, compared with the case without gas input. The effect of decreasing the average droplet size d32 upon the injection of an inert gas in the continuous phase disappears at φin ≈ 2%. The pressure loss at φin ≤ 2% within the measurement error remained constant, while at 4%, it increases by only 5.4%. The role of an inert gas is explained by several factors: (i) a redistribution of momentum over the volume of liquid; (ii) the occurrence of microflows near bubbles and drops, which leads to an increase in shear stresses on the surface of the drops; and (iii) gas bubbles act as pseudocavitation bubbles, whereby when they collapse, they break up adjacent droplets

    Influence of Hydrodynamic Conditions on Micromixing in Microreactors with Free Impinging Jets

    No full text
    An experimental study and mathematical modeling of micromixing in a microreactor with free impinging jets (MRFIJ) with a diameter of 1 mm was carried out. In the experimental part, the iodide-iodate technique was used (involving parallel competing Villermaux–Dushman reactions with the formation of I3−). Theoretical assessment revealed that more than 50% of the introduced energy is dissipated in the jets collision region. Through the use of differentiated sampling, an uneven quality distribution of micro mixing in the central and peripheral zones of the reactor was found: at moderate flow rates (700–1000 mL/min, jets velocity of 15–21 m/s) the micromixing in the central part of reactor is up to 12 times better than that in the periphery. Furthermore, the weight fraction of the probes in the central zones of MRFIJ is reduced with increasing jet velocity; this effect is attributed to a more intense formation of ligaments and droplets upon collision of jets and their secondary mixing on the walls of the apparatus. In terms of the weighted average concentration, the best quality of micromixing in the samples is achieved at a flow rate of 300 mL/min. With an increase in the flow rate (and velocity) of the jets, the dependence of the I3− concentration on the flow rate has a nonmonotonic character, which is explained by a change in the nature of the flow in the collision zone of the jets: the transition from the formation of a liquid sheet to the intensive formation of ligaments and drops and secondary mixing of the liquid film formed on the walls of the reactor. The effect of “freshness” of solutions on the concentration of reaction products was studied

    Gas–Liquid Two-Phase Flow and Heat Transfer without Phase Change in Microfluidic Heat Exchanger

    No full text
    This work presents an experimental study of the possibility of intensifying in microfluidic heat exchangers (MFHE) by creating a two-phase segmented flow (gas–liquid). Measurements of convective heat transfer were carried out using an MFHE, consisting of six channels 1 × 1 mm. Experimental studies have shown that segmented flow makes it possible to increase the Nusselt number of a laminar flow in MFHE up to 1.67 and reduce thermal resistance up to 1.7 times compared to single-phase flow. At the same time, it was found that the intensification of heat exchange by a two-phase flow is observed only for the range of the volume fraction of gas from 10 to 30%. In addition, the calculation of the thermal performance criterion, including both thermal and hydraulic parameters (friction factor), also confirmed the promise of using the Taylor segmented flow as a method for single-phase heat transfer intensifying in microchannels

    Micromixing and Co-Precipitation in Continuous Microreactors with Swirled Flows and Microreactors with Impinging Swirled Flows

    No full text
    One of the promising methods for process intensification for micromixing, co-precipitation, and crystallization in continuous reactors is the use of vigorous vortices. A combination of the high intensity of the kinetic energy input with the small volume of the micromixing volume allows to concentrate the energy dissipation rate up to 104 W/kg and more. As the embodiment of such an idea, four new types of microreactors with intensively swirled flows were created and studied as a tool for continuous co-precipitation and crystallization. A correlation between residence time and segregation index was found: the smaller residence time, the higher energy dissipation rate and better quality of micromixing. A method for the synthesis of oxides of a number of transition metals in microreactors with intensively swirled flows with subsequent thermal treatment of co-precipitation products has been developed. This method was used to obtain ensembles of nanosized particles of zirconium oxides, as well as calcium and strontium fluorides. In comparison with the currently widely used hydro- and solvothermal methods, the proposed method has high productivity (around 10 m3/day for lab scale device), can significantly reduce the duration of the process, provides low energy consumption, does not require a large number of labor-intensive operations, is technologically advanced and easily scalable
    corecore