17 research outputs found

    Potential sources of interference with the highly sensitive detection and quantification of alpha‐synuclein seeds by qRT‐QuIC

    Get PDF
    Parkinson’s disease (PD) is a progressive neurodegenerative disease which is histologically characterized by loss of dopaminergic neurons in the substantia nigra and deposition of aggregated alpha‐synuclein (aSyn) in the brain. The detection of aSyn in well accessible fluids has been one of the central approaches in the development of biomarkers for PD. Recently, real‐time quaking‐induced conversion (RT‐QuIC) has been successfully adapted for use with aSyn seeds. Here, we systematically analysed parameters potentially impacting the reliability of this assay by using quantitative real‐time quaking‐induced conversion (qRT‐QuIC) with in vitro‐formed aSyn seeds. Seeds diluted in cerebrospinal fluid (CSF) accelerated the seeding reaction and slightly increased the sensitivity without affecting specificity. Repeated freeze–thaw cycles decreased the apparent lag times of seeds diluted in ddH2O but did not alter the seeding activity of seeds diluted in CSF. High levels of artificial contamination with blood resulted in prolonged apparent lag times, while sensitivity and specificity were unaffected. Altogether, qRT‐QuIC with aSyn seems to be robust concerning sensitivity and specificity in our model system, but quantitative interpretation might be limited under certain conditions

    Common Variants Near ZIC1 and ZIC4 in Autopsy‐Confirmed Multiple System Atrophy

    Full text link
    Background: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. Objective: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-confirmed cases. Methods: We studied common genetic variations in Multiple System Atrophy cases (N = 731) and controls (N = 2898). Results: The most strongly disease-associated markers were rs16859966 on chromosome 3, rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10-6 , all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). Interpretation: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. Keywords: ZIC1; ZIC4; autopsy-confirmed; genome-wide association study; multiple system atroph

    Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic 18FFET PET radiomics

    Get PDF
    PURPOSE To evaluate radiomic features extracted from standard static images (20-40~min p.i.), early summation images (5-15~min p.i.), and dynamic 18FFET PET images for the prediction of TERTp-mutation status in patients with IDH-wildtype high-grade glioma. METHODS A total of 159 patients (median age 60.2~years, range 19-82~years) with newly diagnosed IDH-wildtype diffuse astrocytic glioma (WHO grade III or IV) and dynamic 18FFET PET prior to surgical intervention were enrolled and divided into a training (n = 112) and a testing cohort (n = 47) randomly. First-order, shape, and texture radiomic features were extracted from standard static (20-40~min summation images; TBR20-40), early static (5-15~min summation images; TBR5-15), and dynamic (time-to-peak; TTP) images, respectively. Recursive feature elimination was used for feature selection by 10-fold cross-validation in the training cohort after normalization, and logistic regression models were generated using the radiomic features extracted from each image to differentiate TERTp-mutation status. The areas under the ROC curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive value were calculated to illustrate diagnostic power in both the training and testing cohort. RESULTS The TTP model comprised nine selected features and achieved highest predictability of TERTp-mutation with an AUC of 0.82 (95{\%} confidence interval 0.71-0.92) and sensitivity of 92.1{\%} in the independent testing cohort. Weak predictive capability was obtained in the TBR5-15 model, with an AUC of 0.61 (95{\%} CI 0.42-0.80) in the testing cohort, while no predictive power was observed in the TBR20-40 model. CONCLUSIONS Radiomics based on TTP images extracted from dynamic 18FFET PET can predict the TERTp-mutation status of IDH-wildtype diffuse astrocytic high-grade gliomas with high accuracy preoperatively

    Travel-associated neurological disease terminated in a postmortem diagnosed atypical HSV-1 encephalitis after high-dose steroid therapy - a case report

    Get PDF
    Background: Human encephalitis can originate from a variety of different aetiologies, of which infection is the most common one. The diagnostic work-up is specifically challenging in patients with travel history since a broader spectrum of unfamiliar additional infectious agents, e. g. tropical disease pathogens, needs to be considered. Here we present a case of encephalitis of unclear aetiology in a female traveller returning from Africa, who in addition developed an atypical herpes simplex virus (HSV) encephalitis in close temporal relation with high-dose steroid treatment. Case presentation: A previously healthy 48-year-old female presented with confusion syndrome and impaired vigilance which had developed during a six-day trip to The Gambia. The condition rapidly worsened to a comatose state. Extensive search for infectious agents including a variety of tropical disease pathogens was unsuccessful. As encephalitic signs persisted despite of calculated antimicrobial and antiviral therapy, high-dose corticosteroids were applied intravenously based on the working diagnosis of an autoimmune encephalitis. The treatment did, however, not improve the patient's condition. Four days later, bihemispheric signal amplification in the insular and frontobasal cortex was observed on magnetic resonance imaging (MRI). The intracranial pressure rapidly increased and could not be controlled by conservative treatment. The patient died due to tonsillar herniation 21 days after onset of symptoms. Histological examination of postmortem brain tissue demonstrated a generalized lymphocytic meningoencephalitis. Immunohistochemical reactions against HSV-1/2 indicated an atypical manifestation of herpesviral encephalitis in brain tissue. Moreover, HSV-1 DNA was detected by a next-generation sequencing (NGS) metagenomics approach. Retrospective analysis of cerebrospinal fluid (CSF) and serum samples revealed HSV-1 DNA only in specimens one day ante mortem. Conclusions: This case shows that standard high-dose steroid therapy can contribute to or possibly even trigger fulminant cerebral HSV reactivation in a critically ill patient. Thus, even if extensive laboratory diagnostics including wide-ranging search for infectious pathogens has been performed before and remained without results, continuous re-evaluation of potential differential diagnoses especially regarding opportunistic infections or reactivation of latent infections is of utmost importance, particularly if new symptoms occur

    PSMA Expression in Glioblastoma as a Basis for Theranostic Approaches: A Retrospective, Correlational Panel Study Including Immunohistochemistry, Clinical Parameters and PET Imaging

    Get PDF
    Aim: The aim of the current study was to enlighten the evolution of prostate-specific membrane antigen (PSMA) expression in glioblastoma between initial diagnosis and recurrence in order to provide preliminary insight for further clinical investigations into innovative PSMA-directed treatment concepts in neuro-oncology. Methods: Patients who underwent resection for de-novo glioblastoma (GBM) and had a re-resection in case of a recurrent tumor following radiochemotherapy and subsequent chemotherapy were included (n = 16). Histological and immunohistochemical stainings were performed at initial diagnosis and at recurrence (n = 96 tissue specimens). Levels of PSMA expression both in endothelial and non-endothelial cells as well as vascular density (CD34) were quantified via immunohistochemistry and changes between initial diagnosis and recurrence were determined. Immunohistochemical findings were correlated with survival and established clinical parameters. Results: PSMA expression was found to be present in all GBM tissue samples at initial diagnosis as well as in all but one case of recurrent tumor samples. The level of PSMA expression in glioblastoma varied inter-individually both in endothelial and non-endothelial cells. Likewise, the temporal evolution of PSMA expression highly varied in between patients. The level of vascular PSMA expression at recurrence and its change between initial diagnosis and recurrence was associated with post recurrence survival time: Patients with high vascular PSMA expression at recurrence as well as patients with increasing PSMA expression throughout the disease course survived shorter than patients with low vascular PSMA expression or decreasing vascular PSMA expression. There was no significant correlation of PSMA expression with MGMT promoter methylation status or Ki-67 labelling index. Conclusion: PSMA is expressed in glioblastoma both at initial diagnosis and at recurrence. High vascular PSMA expression at recurrence seems to be a negative prognostic marker. Thus, PSMA expression in GBM might present a promising target for theranostic approaches in recurrent glioblastoma. Especially PSMA PET imaging and PSMA-directed radioligand therapy warrant further studies in brain tumor patients

    18F-FET PET Uptake Characteristics of Long-Term IDH-Wildtype Diffuse Glioma Survivors

    No full text
    Background: IDHwt diffuse gliomas represent the tumor entity with one of the worst clinical outcomes. Only rare cases present with a long-term survival of several years. Here we aimed at comparing the uptake characteristics on dynamic 18F-FET PET, clinical and molecular genetic parameters of long-term survivors (LTS) versus short-term survivors (STS): Methods: Patients with de-novo IDHwt glioma (WHO grade III/IV) and 18F-FET PET prior to any therapy were stratified into LTS (≥36 months survival) and STS (≤15 months survival). Static and dynamic 18F-FET PET parameters (mean/maximal tumor-to-background ratio (TBRmean/max), biological tumor volume (BTV), minimal time-to-peak (TTPmin)), diameter and volume of contrast-enhancement on MRI, clinical parameters (age, sex, Karnofksy-performance-score), mode of surgery; initial treatment and molecular genetics were assessed and compared between LTS and STS. Results: Overall, 75 IDHwt glioma patients were included (26 LTS, 49 STS). LTS were significantly younger (p < 0.001), had a higher rate of WHO grade III glioma (p = 0.032), of O(6)-Methylguanine-DNA methyltransferase (MGMT) promoter methylation (p < 0.001) and missing Telomerase reverse transcriptase promoter (TERTp) mutations (p = 0.004) compared to STS. On imaging, LTS showed a smaller median BTV (p = 0.017) and a significantly longer TTPmin (p = 0.008) on 18F-FET PET than STS, while uptake intensity (TBRmean/max) did not differ. In contrast to the tumor-volume on PET, MRI-derived parameters such as tumor size as well as all other above-mentioned parameters did not differ between LTS and STS (p > 0.05 each). Conclusion: Besides molecular genetic prognosticators, a long survival time in IDHwt glioma patients is associated with a longer TTPmin as well as a smaller BTV on 18F-FET PET at initial diagnosis. 18F-FET uptake intensity as well as the MRI-derived tumor size (volume and maximal diameter) do not differ in patients with long-term survival

    Single-nucleus chromatin accessibility profiling highlights distinct astrocyte signatures in progressive supranuclear palsy and corticobasal degeneration

    Get PDF
    Tauopathies such as progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) exhibit characteristic neuronal and glial inclusions of hyperphosphorylated Tau (pTau). Although the astrocytic pTau phenotype upon neuropathological examination is the most guiding feature in distinguishing both diseases, regulatory mechanisms controlling their transitions into disease-specific states are poorly understood to date. Here, we provide accessible chromatin data of more than 45,000 single nuclei isolated from the frontal cortex of PSP, CBD, and control individuals. We found a strong association of disease-relevant molecular changes with astrocytes and demonstrate that tauopathy-relevant genetic risk variants are tightly linked to astrocytic chromatin accessibility profiles in the brains of PSP and CBD patients. Unlike the established pathogenesis in the secondary tauopathy Alzheimer disease, microglial alterations were relatively sparse. Transcription factor (TF) motif enrichments in pseudotime as well as modeling of the astrocytic TF interplay suggested a common pTau signature for CBD and PSP that is reminiscent of an inflammatory immediate-early response. Nonetheless, machine learning models also predicted discriminatory features, and we observed marked differences in molecular entities related to protein homeostasis between both diseases. Predicted TF involvement was supported by immunofluorescence analyses in postmortem brain tissue for their highly correlated target genes. Collectively, our data expand the current knowledge on risk gene involvement (e.g., MAPT, MAPK8, and NFE2L2) and molecular pathways leading to the phenotypic changes associated with CBD and PSP

    Combination of pre-treatment dynamic [F-18]FET PET radiomics and conventional clinical parameters for the survival stratification in patients with IDH-wildtype glioblastoma

    Get PDF
    Purpose The aim of this study was to build and evaluate a prediction model which incorporates clinical parameters and radiomic features extracted from static as well as dynamic [F-18]FET PET for the survival stratification in patients with newly diagnosed IDH-wildtype glioblastoma. Methods A total of 141 patients with newly diagnosed IDH-wildtype glioblastoma and dynamic [F-18]FET PET prior to surgical intervention were included. Patients with a survival time <= 12 months were classified as short-term survivors. First order, shape, and texture radiomic features were extracted from pre-treatment static (tumor-to-background ratio;TBR) and dynamic (time-to-peak;TTP) images, respectively, and randomly divided into a training (n = 99) and a testing cohort (n = 42). After feature normalization, recursive feature elimination was applied for feature selection using 5-fold cross-validation on the training cohort, and a machine learning model was constructed to compare radiomic models and combined clinical-radiomic models with selected radiomic features and clinical parameters. The area under the ROC curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive values were calculated to assess the predictive performance for identifying short-term survivors in both the training and testing cohort. Results A combined clinical-radiomic model comprising six clinical parameters and six selected dynamic radiomic features achieved highest predictability of short-term survival with an AUC of 0.74 (95% confidence interval, 0.60-0.88) in the independent testing cohort. Conclusions This study successfully built and evaluated prediction models using [F-18]FET PET-based radiomic features and clinical parameters for the individualized assessment of short-term survival in patients with a newly diagnosed IDH-wildtype glioblastoma. The combination of both clinical parameters and dynamic [F-18]FET PET-based radiomic features reached highest accuracy in identifying patients at risk. Although the achieved accuracy level remained moderate, our data shows that the integration of dynamic [F-18] FET PET radiomic data into clinical prediction models may improve patient stratification beyond established prognostic markers
    corecore