47 research outputs found

    Conservation analysis of B-cell allergen epitopes to predict clinical cross-reactivity between shellfish and inhalant invertebrate allergens

    Get PDF
    Understanding and predicting an individual's clinical cross-reactivity to related allergens is a key to better management, treatment and progression of novel therapeutics for food allergy. In food allergy, clinical cross-reactivity is observed in patients reacting to unexpected allergen sources containing the same allergenic protein or antibody binding patches (epitopes), often resulting in severe allergic reactions. Shellfish allergy affects up to 2% of the world population and persists for life in most patients. The diagnosis of shellfish allergy is however often challenging due to reported clinical cross-reactivity to other invertebrates including mites and cockroaches. Prediction of cross-reactivity can be achieved utilizing an in-depth analysis of a few selected IgE-antibody binding epitopes. We combined available experimentally proven IgE-binding epitopes with informatics-based cross-reactivity prediction modeling to assist in the identification of clinical cross-reactive biomarkers on shellfish allergens. This knowledge can be translated into prevention and treatment of allergic diseases. To overcome the problem of predicting IgE cross-reactivity of shellfish allergens we developed an epitope conservation model using IgE binding epitopes available in the Immune Epitope Database and Analysis Resource. We applied this method to a set of four different shrimp allergens, and successfully identified several non-cross-reactive as well as cross-reactive epitopes, which have been experimentally established to cross-react. Based on these findings we suggest that this method can be used for advanced component-resolved-diagnosis to identify patients sensitized to a specific shellfish group and distinguish from patients with extensive cross-reactivity to ingested and inhaled allergens from invertebrate sources

    Recombinant Tropomyosin from the Pacific Oyster (Crassostrea gigas) for Better Diagnosis

    Get PDF
    The Pacific oyster is a commercially important mollusc and, in contrast to most other shellfish species, frequently consumed without prior heat treatment. Oysters are rich in many nutrients but can also cause food allergy. Knowledge of their allergens and cross-reactivity remains very limited. These limitations make an optimal diagnosis of oyster allergy difficult, in particular to the Pacific oyster (Crassostrea gigas), the most cultivated and consumed oyster species worldwide. This study aimed to characterise IgE sensitisation profiles of 21 oyster-sensitised patients to raw and heated Pacific oyster extract using immunoblotting and advanced mass spectrometry, and to assess the relevance of recombinant oyster allergen for improved diagnosis. Tropomyosin was identified as the major allergen recognised by IgE from 18 of 21 oyster-sensitised patients and has been registered with the WHO/IUIS as the first oyster allergen (Cra g 1). The IgE-binding capacity of oyster-sensitised patients’ IgE to purified natural and recombinant tropomyosin from oyster, prawn, and dust mite was compared using enzyme-linked immunosorbent assay. The degree of IgE binding varied between patients, indicating partial cross-sensitisation and/or co-sensitisation. Amino acid sequence alignment of tropomyosin from these three species revealed five regions that contain predicted IgE-binding epitopes, which are most likely responsible for this cross-reactivity. This study fully biochemically characterises the first and major oyster allergen Cra g 1 and demonstrates that the corresponding recombinant tropomyosin should be implemented in improved component-resolved diagnostics and guide future immunotherapy

    Effects of extraction buffer on the solubility and immunoreactivity of the pacific oyster allergens

    Get PDF
    Despite recent technological advances, novel allergenic protein discovery is limited by their low abundance, often due to specific physical characteristics restricting their recovery during the extraction process from various allergen sources. In this study, eight different extraction buffers were compared for their ability to recover proteins from Pacific oyster (Crassostrea gigas). The protein composition was investigated using high resolution mass spectrometry. The antibody IgE-reactivity of each extract was determined using a pool of serum from five shellfish-allergic patients. Most of the investigated buffers showed good capacity to extract proteins from the Pacific oyster. In general, a higher concentration of proteins was recovered using high salt buffers or high pH buffers, subsequently revealing more IgE-reactive bands on immunoblotting. In contrast, low pH buffers resulted in a poor protein recovery and reduced IgE-reactivity. Discovery of additional IgE-reactive proteins in high salt buffers or high pH buffers was associated with an increase in allergen abundance in the extracts. In conclusion, increasing the ionic strength and pH of the buffer improves the solubility of allergenic proteins during the extraction process for oyster tissue. This strategy could also be applied for other difficult-to-extract allergen sources, thereby yielding an improved allergen panel for increased diagnostic efficiency

    Thermostable allergens in canned fish: Evaluating risks for fish allergy

    Get PDF
    Background: Major fish allergens, including parvalbumin (PV), are heat stable and can withstand extensive cooking processes. Thus, the management of fish allergy generally relies on complete avoidance. Fish-allergic patients may be advised to consume canned fish, as some fish-allergic individuals have reported tolerance to canned fish. However, the safety of consuming canned fish has not been evaluated with comprehensive immunological and molecular analysis of canned fish products. Methods: We characterized the in vitro immunoreactivity of serum obtained from fish-allergic subjects to canned fish. Seventeen canned fish products (salmon n = 8; tuna n = 7; sardine n = 2) were assessed for the content and integrity of PV using allergen-specific antibodies. Subsequently, the sIgE binding of five selected products was evaluated for individual fish-allergic patients (n = 53). Finally, sIgE-binding proteins were identified by mass spectrometry. Results: The canned fish showed a markedly reduced PV content and binding to PV-specific antibodies compared with conventionally cooked fish. However, PV and other heat-stable fish allergens, including tropomyosin and collagen, still maintained their sIgE-binding capacity. Of 53 patients, 66% showed sIgE binding to canned fish proteins. The canned sardine contained proteins bound to sIgE from 51% of patients, followed by canned salmon (43%–45%) and tuna (8%–17%). PV was the major allergen in canned salmon and sardine. Tropomyosin and/or collagen also showed sIgE binding. Conclusion: We showed that canned fish products may not be safe for all fish-allergic patients. Canned fish products should only be considered into the diet of individuals with fish allergy, after detailed evaluation which may include in vitro diagnostics to various heat-stable fish allergens and food challenge conducted in suitable environments

    Identification of novel oyster allergens using a combined transcriptomic and proteomic approach for improved component resolved diagnosis

    Get PDF
    Background: Increasing production and consumption of mollusc is associated with the rise in prevalence of mollusc allergy worldwide, currently ranging from 0.15% to 1.3% of the general population. However, the elucidation of mollusc allergens for better diagnostics still lags behind other seafood groups such as fish and crustacean. Genomic data have been utilized previously for improved identification of non-food allergens by performing similarity searching using the BLAST program. Based on the published genome of the Pacific oyster (Crassostrea gigas) we aimed to identify the complete potential oyster allergen repertoire using ioinformatics analysis, and to investigate identified protein allergenicity using a combination of immuno-chemical methods and proteomic analysis. Results: Ninety-five potential allergenic proteins of the Pacific oyster were discovered using in silico analyses. These proteins were of same protein family and had more than 50% amino acid identity with their homologous allergens. The allergenicity of these proteins was characterized using a combination of immunoassay and transcriptome-derived proteomics analyses. However The 2D-immunoblotting results showed only twenty two IgE-reactive spots in the raw extract of the Pacific oyster, and six spots in the heated extract. The identity of these IgE-reactive proteins was investigated by mass spectrometry. Sixteen allergens were identified, some with two or more isoforms. Conclusions: The combination of genomics coupled to proteomics and IgE-reactivity profiling is a powerful method for the identification of novel allergens from food sources. Using this combination approach we were able to expand the current knowledge on IgE-reactivity to various proteins of the Pacific oyster. These newly identified allergens and knowledge of their gene sequences will facilitate the development of improved component resolved diagnosis and future immunotherapy approach for oyster allergy

    Commercial shellfish skin prick test extracts show critical variability in allergen repertoire

    Get PDF
    [Extract] Crustacean and mollusc (shellfish) allergy affects up to 3% of the general population, is usually lifelong and commonly triggers anaphylaxis.1 Allergen repertoire diversity among hundreds of edible shellfish species worldwide is poorly reflected in available in vivo and in vitro diagnostic tools for shellfish allergy. Skin prick testing (SPT) is often the preferred first-line diagnostic approach. However, widely utilized commercial SPT extracts are generally not standardized, limiting the diagnostic value of results.2 Asero et al. reported a heterogeneous abundance of three shellfish allergens in five commercial crustacean SPT extracts, resulting in 32 clinical profiles among 157 shrimp-allergic patients.3 In 2019, we demonstrated considerable variability in allergen repertoire and IgE-binding for 27 commercial fish SPT extracts.4 We now report an even greater, critical variability for 11 commercial crustacean and five mollusc SPT extracts, utilizing biochemical and immunological methods and mass spectrometry (see Appendix S1 for methodology and TableS1 for allergen extract details)

    Novel allergen discovery through comprehensive de novo transcriptomic analyses of five shrimp species

    Get PDF
    Shellfish allergy affects 2% of the world's population and persists for life in most patients. The diagnosis of shellfish allergy, in particular shrimp, is challenging due to the similarity of allergenic proteins from other invertebrates. Despite the clinical importance of immunological cross-reactivity among shellfish species and between allergenic invertebrates such as dust mites, the underlying molecular basis is not well understood. Here we mine the complete transcriptome of five frequently consumed shrimp species to identify and compare allergens with all known allergen sources. The transcriptomes were assembled de novo, using Trinity, from raw RNA-Seq data of the whiteleg shrimp (Litopenaeus vannamei), black tiger shrimp (Penaeus monodon), banana shrimp (Fenneropenaeus merguiensis), king shrimp (Melicertus latisulcatus), and endeavour shrimp (Metapenaeus endeavouri). BLAST searching using the two major allergen databases, WHO/IUIS Allergen Nomenclature and AllergenOnline, successfully identified all seven known crustacean allergens. The analyses revealed up to 39 unreported allergens in the different shrimp species, including heat shock protein (HSP), alpha-tubulin, chymotrypsin, cyclophilin, beta-enolase, aldolase A, and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Multiple sequence alignment (Clustal Omega) demonstrated high homology with allergens from other invertebrates including mites and cockroaches. This first transcriptomic analyses of allergens in a major food source provides a valuable resource for investigating shellfish allergens, comparing invertebrate allergens and future development of improved diagnostics for food allergy

    Fish-derived low molecular weight components modify bronchial epithelial barrier properties and release of pro-inflammatory cytokines

    Get PDF
    The prevalence of fish allergy among fish-processing workers is higher than in the general population, possibly due to sensitization via inhalation and higher exposure. However, the response of the bronchial epithelium to fish allergens has never been explored. Parvalbumins (PVs) from bony fish are major sensitizers in fish allergy, while cartilaginous fish and their PVs are considered less allergenic. Increasing evidence demonstrates that components other than proteins from the allergen source, such as low molecular weight components smaller than 3 kDa (LMC) from pollen, may act as adjuvants during allergic sensitization. We investigated the response of bronchial epithelial cells to PVs and to LMC from Atlantic cod, a bony fish, and gummy shark, a cartilaginous fish. Polarized monolayers of the bronchial epithelial cell line 16HBE14owere stimulated apically with fish PVs and/-or the corresponding fish LMC. Barrier integrity, transport of PVs across the monolayers and release of mediators were monitored. Intact PVs from both the bony and the cartilaginous fish were rapidly internalized by the cells and transported to the basolateral side of the monolayers. The PVs did not disrupt the epithelial barrier integrity nor did they modify the release of proinflammatory cytokines. In contrast, LMC from both fish species modified the physical and immunological properties of the epithelial barrier and the responses differed between bony and cartilaginous fish. While the barrier integrity was lowered by cod LMC 24 h after cell stimulation, it was increased by up to 2.3-fold by shark LMC. Furthermore, LMC from both fish species increased basolateral and apical release of IL 6 and IL-8, while CCL2 release was increased by cod but not by shark LMC. In summary, our study demonstrated the rapid transport of PVs across the epithelium which may result in their availability to antigen presenting cells required for allergic sensitization. Moreover, different cell responses to LMC derived from bony versus cartilaginous fish were observed, which may play a role in different allergenic potentials of these two fish classes

    The first reptilian allergen and major allergen for fish-allergic patients: Crocodile β-parvalbumin

    Get PDF
    Background: Clinical cross-reactivity between bony fish, cartilaginous fish, frog, and chicken muscle has previously been demonstrated in fish-allergic patients. In indicative studies, two reports of anaphylaxis following the consumption of crocodile meat and IgE-cross-binding were linked to the major fish allergen parvalbumin (PV). This study investigates IgE-binding proteins in crocodile meat with a focus on PV and their clinical relevance. Methods: Proteins were extracted from muscle tissue of crocodile, three bony fish, and two cartilaginous fish. A cohort of fish-allergic pediatric patients (n = 77) underwent allergen skin prick testing (SPT) to three fish preparations (n = 77) and crocodile (n = 12). IgE-binding proteins were identified and quantified by SDS-PAGE, mass spectrometric analyses, and immunoblotting using commercial and in-house antibodies, as well as individual and pooled patients’ serum. PV isoforms were purified or recombinantly expressed before immunological analyses, including human mast cell degranulation assay. Results: Of the tissues analyzed, PV was most abundant in heated crocodile preparation, triggering an SPT of ≥3 mm in 8 of 12 (67%) fish-allergic patients. Seventy percent (31 of 44) of fish PV-sensitized patients demonstrated IgE-binding to crocodile PV. Crocodile β-PV was the major IgE-binding protein but 20-fold less abundant than α-PV. Cellular reactivity was demonstrated for β-PV and epitopes predicted, explaining frequent IgE-cross-binding of β-PVs. Both PV isoforms are now registered as the first reptile allergens with the WHO/IUIS (β-PV as Cro p 1 and α-PV as Cro p 2). Conclusion: Fish-allergic individuals may be at risk of an allergy to crocodile and should seek specialist advice before consuming crocodilian meat

    Collagen-an important fish allergen for improved diagnosis

    Get PDF
    Background Fish collagen is widely used in medicine, cosmetics, and the food industry. However, its clinical relevance as an allergen is not fully appreciated. This is likely due to collagen insolubility in neutral aqueous solutions, leading to low abundance in commercially available in vitro and skin prick tests for fish allergy. Objective To investigate the relevance of fish collagen as an allergen in a large patient population (n = 101). Methods Acid-soluble collagen type I was extracted from muscle and skin of Atlantic salmon, barramundi, and yellowfin tuna. IgE binding to collagen was analyzed by ELISA for 101 fish-allergic patients. Collagen-sensitized patients' sera were tested for IgE binding to parvalbumin from the same fish species. IgE cross-linking was analyzed by rat basophil leukemia assay and basophil activation test. Protein identities were confirmed by mass spectrometry. Results Purified fish collagen contained type I α1 and α2 chains and their multimers. Twenty-one of 101 patients (21%) were sensitized to collagen. Eight collagen-sensitized patients demonstrated absence of parvalbumin-specific IgE to some fish species. Collagen induced functional IgE cross-linking, as shown by rat basophil leukemia assay performed using 6 patients' sera, and basophil activation test using fresh blood from 1 patient. Collagen type I α chains from barramundi and Atlantic salmon were registered at www.allergen.org as Lat c 6 and Sal s 6, respectively. Conclusions IgE sensitization and IgE cross-linking capacity of fish collagen were demonstrated in fish-allergic patients. Inclusion of relevant collagen allergens in routine diagnosis is indicated to improve the capacity to accurately diagnose fish allergy
    corecore