130 research outputs found

    Selective immunosuppression in organ transplantation

    Get PDF

    Oncologie: technologie op het snijvlak

    Get PDF

    Monitoring of tumor response to Cisplatin using optical spectroscopy

    Get PDF
    INTRODUCTION Anatomic imaging alone is often inadequate for tuning systemic treatment for individual tumor response. Optically based techniques could potentially contribute to fast and objective response monitoring in personalized cancer therapy. In the present study, we evaluated the feasibility of dual-modality diffuse reflectance spectroscopy-autofluorescence spectroscopy (DRS-AFS) to monitor the effects of systemic treatment in a mouse model for hereditary breast cancer. METHODS Brca1(-/-); p53(-/-) mammary tumors were grown in 36 mice, half of which were treated with a single dose of cisplatin. Changes in the tumor physiology and morphology were measured for a period of 1 week using dual-modality DRS-AFS. Liver and muscle tissues were also measured to distinguish tumor-specific alterations from systemic changes. Model-based analyses were used to derive different optical parameters like the scattering and absorption coefficients, as well as sources of intrinsic fluorescence. Histopathologic analysis was performed for cross-validation with trends in optically based parameters. RESULTS Treated tumors showed a significant decrease in Mie-scattering slope and Mie-to-total scattering fraction and an increase in both fat volume fraction and tissue oxygenation after 2 days of follow-up. Additionally, significant tumor-specific changes in the fluorescence spectra were seen. These longitudinal trends were consistent with changes observed in the histopathologic analysis, such as vital tumor content and formation of fibrosis. CONCLUSIONS This study demonstrates that dual-modality DRS-AFS provides quantitative functional information that corresponds well with the degree of pathologic response. DRS-AFS, in conjunction with other imaging modalities, could be used to optimize systemic cancer treatment on the basis of early individual tumor response

    Monitoring of tumor radio frequency ablation using derivative spectroscopy

    Get PDF
    Despite the widespread use of radio frequency (RF) ablation, an effective way to assess thermal tissue damage during and after the procedure is still lacking. We present a method for monitoring RF ablation efficacy based on thermally induced methemoglobin as a marker for full tissue ablation. Diffuse reflectance (DR) spectra were measured from human blood samples during gradual heating of the samples from 37 to 60, 70, and 85°C. Additionally, reflectance spectra were recorded real-time during RF ablation of human liver tissue ex vivo and in vivo. Specific spectral characteristics of methemoglobin were extracted from the spectral slopes using a custom optical ablation ratio. Thermal coagulation of blood caused significant changes in the spectral slopes, which is thought to be caused by the formation of methemoglobin. The time course of these changes was clearly dependent on the heating temperature. RF ablation of liver tissue essentially led to similar spectral alterations. In vivo DR measurements confirmed that the method could be used to assess the degree of thermal damage during RF ablation and long after the tissue cooled

    Genetic enclosures in agriculture: Are farmers becoming propertied workers?

    Get PDF
    This thesis examines the political economy of genetically modified (GM) crops. Its empirical focus is their impact on farmers in Australia. It also considers and compares the experiences of Canada and the United States where GM crops are more prevalent but which have comparable legal, political and agrarian economies to that in Australia. Investigating the question of whether farmers are being proletarianised due to the proliferation of GM crops, the thesis engages with the concept of enclosures and how enclosures are mobilised, through the prevailing corporate food regime, to respond to the various crises and contradictions of capitalism. GM crops are conceptualised here as a genetic enclosure that create market imperatives for farmers to buy seeds, establishing new sources of capital, while also being posited as a response to various social and ecological crises facing contemporary, industrialised agriculture. The thesis finds that a confluence of legal, economic, technological and public policy developments contribute to the concentration of economic and political power in agriculture. This has tangible impacts on the lives of farmers creating a tendency for them to become propertied workers or contractors for major seed companies. Farmers’ labour and the natural world are simultaneously subsumed by circuits of capital accumulation in this process, which forges an increasingly industrialised future for agriculture

    Comparison of preprocessing techniques to reduce nontissue-related variations in hyperspectral reflectance imaging

    Get PDF
    Significance: Hyperspectral reflectance imaging can be used in medicine to identify tissue types, such as tumor tissue. Tissue classification algorithms are developed based on, e.g., machine learning or principle component analysis. For the development of these algorithms, data are generally preprocessed to remove variability in data not related to the tissue itself since this will improve the performance of the classification algorithm. In hyperspectral imaging, the measured spectra are also influenced by reflections from the surface (glare) and height variations within and between tissue samples.Aim: To compare the ability of different preprocessing algorithms to decrease variations in spectra induced by glare and height differences while maintaining contrast based on differences in optical properties between tissue types.Approach: We compare eight preprocessing algorithms commonly used in medical hyperspectral imaging: standard normal variate, multiplicative scatter correction, min-max normalization, mean centering, area under the curve normalization, single wavelength normalization, first derivative, and second derivative. We investigate conservation of contrast stemming from differences in: blood volume fraction, presence of different absorbers, scatter amplitude, and scatter slope-while correcting for glare and height variations. We use a similarity metric, the overlap coefficient, to quantify contrast between spectra. We also investigate the algorithms for clinical datasets from the colon and breast.Conclusions: Preprocessing reduces the overlap due to glare and distance variations. In general, the algorithms standard normal variate, min-max, area under the curve, and single wavelength normalization are the most suitable to preprocess data used to develop a classification algorithm for tissue classification. The type of contrast between tissue types determines which of these four algorithms is most suitable

    Clinical implementation of in-house developed MR-based patient-specific 3D models of liver anatomy

    Get PDF
    Knowledge of patient-specific liver anatomy is key to patient safety during major hepatobiliary surgery. Three-dimensional (3D) models of patient-specific liver anatomy based on diagnostic MRI images can provide essential vascular and biliary anatomical insight during surgery. However, a method for generating these is not yet publicly available. This paper describes how these 3D models of the liver can be generated using open source software, and then subsequently integrated into a sterile surgical environment. The most common image quality aspects that degrade the quality of the 3D models as well possible ways of eliminating these are also discussed. Per patient, a single diagnostic multiphase MRI scan with hepatospecific contrast agent was used for automated segmentation of liver contour, arterial, portal, and venous anatomy, and the biliary tree. Subsequently, lesions were delineated manually. The resulting interactive 3D model could be accessed during surgery on a sterile covered tablet. Up to now, such models have been used in 335 surgical procedures. Their use simplified the surgical treatment of patients with a high number of liver metastases and contributed to the localization of vanished lesions in cases of a radiological complete response to neoadjuvant treatment. They facilitated perioperative verification of the relationship of tumors and the surrounding vascular and biliary anatomy, and eased decision-making before and during surgery.Radiolog

    CBCT-based navigation system for open liver surgery: accurate guidance toward mobile and deformable targets with a semi-rigid organ approximation and electromagnetic tracking of the liver

    Get PDF
    Purpose The surgical navigation system that provides guidance throughout the surgery can facilitate safer and more radical liver resections, but such a system should also be able to handle organ motion. This work investigates the accuracy of intraoperative surgical guidance during open liver resection, with a semi-rigid organ approximation and electromagnetic tracking of the target area.Methods The suggested navigation technique incorporates a preoperative 3D liver model based on diagnostic 4D MRI scan, intraoperative contrast-enhanced CBCT imaging and electromagnetic (EM) tracking of the liver surface, as well as surgical instruments, by means of six degrees-of-freedom micro-EM sensors.Results The system was evaluated during surgeries with 35 patients and resulted in an accurate and intuitive real-time visualization of liver anatomy and tumor's location, confirmed by intraoperative checks on visible anatomical landmarks. Based on accuracy measurements verified by intraoperative CBCT, the system's average accuracy was 4.0 +/- 3.0 mm, while the total surgical delay due to navigation stayed below 20 min.Conclusions The electromagnetic navigation system for open liver surgery developed in this work allows for accurate localization of liver lesions and critical anatomical structures surrounding the resection area, even when the liver was manipulated. However, further clinically integrating the method requires shortening the guidance-related surgical delay, which can be achieved by shifting to faster intraoperative imaging like ultrasound. Our approach is adaptable to navigation on other mobile and deformable organs, and therefore may benefit various clinical applications.Radiolog
    • …
    corecore