98 research outputs found

    Assessment of potential cardiotoxic side effects of mitoxantrone in patients with multiple sclerosis

    Get PDF
    Previous studies showed that mitoxantrone can reduce disability progression in patients with multiple sclerosis (MS). There is, however, concern that it may cause irreversible cardiomyopathy with reduced left ventricular (LV) ejection fraction (EF) and congestive heart failure. The aim of this prospective study was to investigate cardiac side effects of mitoxantrone by repetitive cardiac monitoring in MS patients. The treatment protocol called for ten courses of a combined mitoxantrone (10 mg/m(2) body surface) and methylprednisolone therapy. Before each course, a transthoracic echocardiogram was performed to determine the LV end-diastolic diameter, the end-systolic diameter and the fractional shortening; the LV-EF was calculated. Seventy-three patients participated (32 males; age 48 +/- 12 years, range 20-75 years; 25 with primary progressive, 47 with secondary progressive and 1 with relapsing-remitting MS) who received at least four courses of mitoxantrone. Three of the 73 patients were excluded during the study (2 patients discontinued therapy; 1 patient with a previous history of ischemic heart disease developed atrial fibrillation after the second course of mitoxantrone). The mean cumulative dose of mitoxantrone was 114.0 +/- 33.8 mg. The mean follow-up time was 23.4 months (range 10-57 months). So far, there has been no significant change in any of the determined parameters (end-diastolic diameter, end-systolic diameter, fractional shortening, EF) over time during all follow-up investigations. Mitoxantrone did not cause signs of congestive heart failure in any of the patients. Further cardiac monitoring is, however, needed to determine the safety of mitoxantrone after longer follow-up times and at higher cumulative doses. Copyright (C) 2005 S. Karger AG, Basel

    The positive impact of red palm oil in school meals on vitamin A status: study in Burkina Faso

    Get PDF
    BACKGROUND: Vitamin A (VA) deficiency is widespread in sub-Saharan Africa and school-age children are a vulnerable group. In Burkina Faso, the production and consumption of red palm oil (RPO) is being promoted as a food supplement for VA. The objective of the study was to assess the impact on serum retinol of adding RPO to school lunch in two test zones of Burkina Faso. METHODS: Over one school year, 15 ml RPO was added to individual meals 3 times a week in selected primary schools in two sites. Serum retinol was measured with HPLC at baseline and exactly 12 months later to take account of seasonality. A simple pre-post test design was used in the Kaya area (north-central Burkina), where 239 pupils from 15 intervention schools were randomly selected for the evaluation. In Bogandé (eastern Burkina), 24 schools were randomised for the controlled intervention trial: 8 negative controls (G1) with only the regular school lunch; 8 positive controls (G2) where the pupils received a single VA capsule (60 mg) at the end of the school year; and 8 schools with RPO through the school year (G3). A random sample of 128 pupils in each school group took part in the evaluation. RESULTS: In Kaya, serum retinol went from 0.77 ± 0.37 μmol/L at baseline to 1.07 ± 0.40 μmol/L one year later (p < 0.001). The rate of low serum retinol (<0.7 μmol/L) declined from 47.2% to 13.1%. In Bogandé, serum retinol increased significantly (p < 0.001) only in the capsule and RPO groups, going from 0.77 ± 0.28 to 0.98 ± 0.33 μmol/L in the former, and from 0.82 ± 0.3 to 0.98 ± 0.33 μmol/L in the latter. The rate of low serum retinol went from 46.1 to 17.1% in the VA capsule group and from 40.4% to 14.9% in the RPO group. VA-deficient children benefited the most from the capsule or RPO. Female sex, age and height-for-age were positively associated with the response to VA capsules or RPO. CONCLUSION: RPO given regularly in small amounts appears highly effective in the reduction of VA deficiency. RPO deserves more attention as a food supplement for VA and as a potential source of rural income in Sahelian countries

    An immune dysfunction score for stratification of patients with acute infection based on whole-blood gene expression.

    Get PDF
    Dysregulated host responses to infection can lead to organ dysfunction and sepsis, causing millions of global deaths each year. To alleviate this burden, improved prognostication and biomarkers of response are urgently needed. We investigated the use of whole-blood transcriptomics for stratification of patients with severe infection by integrating data from 3149 samples from patients with sepsis due to community-acquired pneumonia or fecal peritonitis admitted to intensive care and healthy individuals into a gene expression reference map. We used this map to derive a quantitative sepsis response signature (SRSq) score reflective of immune dysfunction and predictive of clinical outcomes, which can be estimated using a 7- or 12-gene signature. Last, we built a machine learning framework, SepstratifieR, to deploy SRSq in adult and pediatric bacterial and viral sepsis, H1N1 influenza, and COVID-19, demonstrating clinically relevant stratification across diseases and revealing some of the physiological alterations linking immune dysregulation to mortality. Our method enables early identification of individuals with dysfunctional immune profiles, bringing us closer to precision medicine in infection

    Randomized trial of thymectomy in myasthenia gravis

    Get PDF

    Perspectives on the use of transcriptomics to advance biofuels

    Get PDF
    As a field within the energy research sector, bioenergy is continuously expanding. Although much has been achieved and the yields of both ethanol and butanol have been improved, many avenues of research to further increase these yields still remain. This review covers current research related with transcriptomics and the application of this high-throughput analytical tool to engineer both microbes and plants with the penultimate goal being better biofuel production and yields. The initial focus is given to the responses of fermentative microbes during the fermentative production of acids, such as butyric acid, and solvents, including ethanol and butanol. As plants offer the greatest natural renewable source of fermentable sugars within the form of lignocellulose, the second focus area is the transcriptional responses of microbes when exposed to plant hydrolysates and lignin-related compounds. This is of particular importance as the acid/base hydrolysis methods commonly employed to make the plant-based cellulose available for enzymatic hydrolysis to sugars also generates significant amounts of lignin-derivatives that are inhibitory to fermentative bacteria and microbes. The article then transitions to transcriptional analyses of lignin-degrading organisms, such as Phanerochaete chrysosporium, as an alternative to acid/base hydrolysis. The final portion of this article will discuss recent transcriptome analyses of plants and, in particular, the genes involved in lignin production. The rationale behind these studies is to eventually reduce the lignin content present within these plants and, consequently, the amount of inhibitors generated during the acid/base hydrolysis of the lignocelluloses. All four of these topics represent key areas where transcriptomic research is currently being conducted to identify microbial genes and their responses to products and inhibitors as well as those related with lignin degradation/formation.clos
    corecore