97 research outputs found

    Improving probe set selection for microbial community analysis by leveraging taxonomic information of training sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Population levels of microbial phylotypes can be examined using a hybridization-based method that utilizes a small set of computationally-designed DNA probes targeted to a gene common to all. Our previous algorithm attempts to select a set of probes such that each training sequence manifests a unique theoretical hybridization pattern (a binary fingerprint) to a probe set. It does so without taking into account similarity between training gene sequences or their putative taxonomic classifications, however. We present an improved algorithm for probe set selection that utilizes the available taxonomic information of training gene sequences and attempts to choose probes such that the resultant binary fingerprints cluster into real taxonomic groups.</p> <p>Results</p> <p>Gene sequences manifesting identical fingerprints with probes chosen by the new algorithm are more likely to be from the same taxonomic group than probes chosen by the previous algorithm. In cases where they are from different taxonomic groups, underlying DNA sequences of identical fingerprints are more similar to each other in probe sets made with the new versus the previous algorithm. Complete removal of large taxonomic groups from training data does not greatly decrease the ability of probe sets to distinguish those groups.</p> <p>Conclusions</p> <p>Probe sets made from the new algorithm create fingerprints that more reliably cluster into biologically meaningful groups. The method can readily distinguish microbial phylotypes that were excluded from the training sequences, suggesting novel microbes can also be detected.</p

    HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota

    Full text link
    BACKGROUND: Regardless of infection route, the intestine is the primary site for HIV-1 infection establishment and results in significant mucosal CD4+ T lymphocyte depletion, induces an inflammatory state that propagates viral dissemination, facilitates microbial translocation, and fosters establishment of one of the largest HIV reservoirs. Here we test the prediction that HIV infection modifies the composition and function of the mucosal commensal microbiota. RESULTS: Rectal mucosal microbiota were collected from human subjects using a sponge-based sampling methodology. Samples were collected from 20 HIV-positive men not receiving combination anti-retroviral therapy (cART), 20 HIV-positive men on cART and 20 healthy, HIV-negative men. Microbial composition of samples was analyzed using barcoded 16S Illumina deep sequencing (85,900 reads per sample after processing). Microbial metagenomic information for the samples was imputed using the bioinformatic tools PICRUST and HUMAnN. Microbial composition and imputed function in HIV-positive individuals not receiving cART was significantly different from HIV-negative individuals. Genera including Roseburia, Coprococcus, Ruminococcus, Eubacterium, Alistipes and Lachnospira were depleted in HIV-infected subjects not receiving cART, while Fusobacteria, Anaerococcus, Peptostreptococcus and Porphyromonas were significantly enriched. HIV-positive subjects receiving cART exhibited similar depletion and enrichment for these genera, but were of intermediate magnitude and did not achieve statistical significance. Imputed metagenomic functions, including amino acid metabolism, vitamin biosynthesis, and siderophore biosynthesis differed significantly between healthy controls and HIV-infected subjects not receiving cART. CONCLUSIONS: HIV infection was associated with rectal mucosal changes in microbiota composition and imputed function that cART failed to completely reverse. HIV infection was associated with depletion of some commensal species and enrichment of a few opportunistic pathogens. Many imputed metagenomic functions differed between samples from HIV-negative and HIV-positive subjects not receiving cART, possibly reflecting mucosal metabolic changes associated with HIV infection. Such functional pathways may represent novel interventional targets for HIV therapy if normalizing the microbial composition or functional activity of the microbiota proves therapeutically useful

    Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships

    Get PDF
    Background: Consistent compositional shifts in the gut microbiota are observed in IBD and other chronic intestinal disorders and may contribute to pathogenesis. The identities of microbial biomolecular mechanisms and metabolic products responsible for disease phenotypes remain to be determined, as do the means by which such microbial functions may be therapeutically modified. Results: The composition of the microbiota and metabolites in gut microbiome samples in 47 subjects were determined. Samples were obtained by endoscopic mucosal lavage from the cecum and sigmoid colon regions, and each sample was sequenced using the 16S rRNA gene V4 region (Illumina-HiSeq 2000 platform) and assessed by UPLC mass spectroscopy. Spearman correlations were used to identify widespread, statistically significant microbial-metabolite relationships. Metagenomes for identified microbial OTUs were imputed using PICRUSt, and KEGG metabolic pathway modules for imputed genes were assigned using HUMAnN. The resulting metabolic pathway abundances were mostly concordant with metabolite data. Analysis of the metabolome-driven distribution of OTU phylogeny and function revealed clusters of clades that were both metabolically and metagenomically similar. Conclusions: The results suggest that microbes are syntropic with mucosal metabolome composition and therefore may be the source of and/or dependent upon gut epithelial metabolites. The consistent relationship between inferred metagenomic function and assayed metabolites suggests that metagenomic composition is predictive to a reasonable degree of microbial community metabolite pools. The finding that certain metabolites strongly correlate with microbial community structure raises the possibility of targeting metabolites for monitoring and/or therapeutically manipulating microbial community function in IBD and other chronic diseases

    Cloning of the SNG1

    Full text link

    Adapting Polony Technology to Oligonucleotide Fingerprinting of Ribosomal rRNA Genes for Microbial Community Analysis

    No full text
    Bacteria are present in nearly all terrestrial environments and play varied and important roles. Understanding their impacts on the environments and hosts where they reside is greatly aided by an accurate estimation of the number and types present. We have adapted polony technology to Oligonucleotide Fingerprinting of Ribosomal rRNA Genes (OFRG), a hybridization-based method for clustering similar 16S rDNA sequences. We present a new OFRG probe set design method that utilizes the available taxonomic information of training sequences to improve the clustering of fingerprints into biologically meaningful groups. A software tool is presented that quickly and accurately identifies randomly placed polonies in microarray images. The polony OFRG method is applied to DNA from a mock bacterial community created from a clone library, as well as to PCR amplicons made from the same mock community to examine PCR bias. We also examine several natural bacterial communities, making polonies starting directly from genomic DNA templates. The method successfully clusters the known bacterial community and reveals the presence of artifacts in template from the mock community PCR. Natural bacterial communities are differentiated using a weighted UniFrac analysis. Due to the initial spatial separation of sample DNA strands, polonies are essentially free of the PCR bias and chimeric sequence formation that occurs in mixed-template PCR reactions. An additional benefit of the polony format is that sequences of near full-length rDNA can be obtained when desired - a feature not possible with current high-throughput sequencing methods. We anticipate polony OFRG may be an invaluable tool for microbial population studies where these two characteristics are required

    Gustav Moynier

    No full text
    • …
    corecore