63 research outputs found

    Anterior Prefrontal Cortex Contributes to Action Selection through Tracking of Recent Reward Trends

    Get PDF
    The functions of prefrontal cortex remain enigmatic, especially for its anterior sectors, putatively ranging from planning to self-initiated behavior, social cognition, task switching, and memory. A predominant current theory regarding the most anterior sector, the frontopolar cortex (FPC), is that it is involved in exploring alternative courses of action, but the detailed causal mechanisms remain unknown. Here we investigated this issue using the lesion method, together with a novel model-based analysis. Eight patients with anterior prefrontal brain lesions including the FPC performed a four-armed bandit task known from neuroimaging studies to activate the FPC. Model-based analyses of learning demonstrated a selective deficit in the ability to extrapolate the most recent trend, despite an intact general ability to learn from past rewards. Whereas both brain-damaged and healthy controls used comparisons between the two most recent choice outcomes to infer trends that influenced their decision about the next choice, the group with anterior prefrontal lesions showed a complete absence of this component and instead based their choice entirely on the cumulative reward history. Given that the FPC is thought to be the most evolutionarily recent expansion of primate prefrontal cortex, we suggest that its function may reflect uniquely human adaptations to select and update models of reward contingency in dynamic environments

    Distributed neural system for general intelligence revealed by lesion mapping

    Get PDF
    General intelligence (g) captures the performance variance shared across cognitive tasks and correlates with real-world success. Yet it remains debated whether g reflects the combined performance of brain systems involved in these tasks or draws on specialized systems mediating their interactions. Here we investigated the neural substrates of g in 241 patients with focal brain damage using voxel-based lesion–symptom mapping. A hierarchical factor analysis across multiple cognitive tasks was used to derive a robust measure of g. Statistically significant associations were found between g and damage to a remarkably circumscribed albeit distributed network in frontal and parietal cortex, critically including white matter association tracts and frontopolar cortex. We suggest that general intelligence draws on connections between regions that integrate verbal, visuospatial, working memory, and executive processes

    The projective consciousness model and phenomenal selfhood

    Get PDF
    We summarize our recently introduced Projective Consciousness Model (PCM) (Rudrauf et al., 2017) and relate it to outstanding conceptual issues in the theory of consciousness. The PCM combines a projective geometrical model of the perspectival phenomenological structure of the field of consciousness with a variational Free Energy minimization model of active inference, yielding an account of the cybernetic function of consciousness, viz., the modulation of the field's cognitive and affective dynamics for the effective control of embodied agents. The geometrical and active inference components are linked via the concept of projective transformation, which is crucial to understanding how conscious organisms integrate perception, emotion, memory, reasoning, and perspectival imagination in order to control behavior, enhance resilience, and optimize preference satisfaction. The PCM makes substantive empirical predictions and fits well into a (neuro)computationalist framework. It also helps us to account for aspects of subjective character that are sometimes ignored or conflated: pre-reflective self-consciousness, the first-person point of view, the sense of minenness or ownership, and social self-consciousness. We argue that the PCM, though still in development, offers us the most complete theory to date of what Thomas Metzinger has called "phenomenal selfhood.

    Dynamics of epileptiform activity in mouse hippocampal slices

    Get PDF
    Increase of the extracellular K +  concentration mediates seizure-like synchronized activities in vitro and was proposed to be one of the main factors underlying epileptogenesis in some types of seizures in vivo. While underlying biophysical mechanisms clearly involve cell depolarization and overall increase in excitability, it remains unknown what qualitative changes of the spatio-temporal network dynamics occur after extracellular K +  increase. In this study, we used multi-electrode recordings from mouse hippocampal slices to explore changes of the network activity during progressive increase of the extracellular K +  concentration. Our analysis revealed complex spatio-temporal evolution of epileptiform activity and demonstrated a sequence of state transitions from relatively simple network bursts into complex bursting, with multiple synchronized events within each burst. We describe these transitions as qualitative changes of the state attractors, constructed from experimental data, mediated by elevation of extracellular K +  concentration

    Active Inference, Novelty and Neglect

    Get PDF
    In this chapter, we provide an overview of the principles of active inference. We illustrate how different forms of short-term memory are expressed formally (mathematically) through appealing to beliefs about the causes of our sensations and about the actions we pursue. This is used to motivate an approach to active vision that depends upon inferences about the causes of 'what I have seen' and learning about 'what I would see if I were to look there'. The former could manifest as persistent 'delay-period' activity - of the sort associated with working memory, while the latter is better suited to changes in synaptic efficacy - of the sort that underlies short-term learning and adaptation. We review formulations of these ideas in terms of active inference, their role in directing visual exploration and the consequences - for active vision - of their failures. To illustrate the latter, we draw upon some of our recent work on the computational anatomy of visual neglect

    An Integrative-Relational Approach in Schizophrenia: From Philosophical Principles to Mentalization-Based Practice

    Get PDF
    In this paper, we explore psychosis and schizophrenia as prototype disturbances, where mentalizing failures are widely seen. We attempt to describe how the process of rekindling mentalizing within attachment relationships (here, the patient-therapist relationship) can have a protective effect not just on the onset of the disturbance, but also when psychosis is already actively installed. We start by discussing mentalizing in training, practice and supervision. We also try to understand it contextually, as a relational concept, within the history of psychological therapies

    Ten years of Nature Reviews Neuroscience: insights from the highly cited

    Full text link
    • …
    corecore