13 research outputs found

    Long-term and blow-up behaviors of exponential moments in multi-dimensional affine diffusions

    Get PDF
    This paper considers multi-dimensional affine processes with continuous sample paths. By analyzing the Riccati system, which is associated with affine processes via the transform formula, we fully characterize the regions of exponents in which exponential moments of a given process do not explode at any time or explode at a given time. In these two cases, we also compute the long-term growth rate and the explosion rate for exponential moments. These results provide a handle to study implied volatility asymptotics in models where returns of stock prices are described by affine processes whose exponential moments do not have an explicit formula.Comment: 36 pages, 5 figure

    Non-Supersymmetric Attractors

    Get PDF
    We consider theories with gravity, gauge fields and scalars in four-dimensional asymptotically flat space-time. By studying the equations of motion directly we show that the attractor mechanism can work for non-supersymmetric extremal black holes. Two conditions are sufficient for this, they are conveniently stated in terms of an effective potential involving the scalars and the charges carried by the black hole. Our analysis applies to black holes in theories with N≤1{\cal N} \le 1 supersymmetry, as well as non-supersymmetric black holes in theories with N=2{\cal N} = 2 supersymmetry. Similar results are also obtained for extremal black holes in asymptotically Anti-de Sitter space and in higher dimensions.Comment: 55 pages, LaTeX, 7 eps figures. v3: references and some additional comments added, minor correction

    A C-Function For Non-Supersymmetric Attractors

    Get PDF
    We present a c-function for spherically symmetric, static and asymptotically flat solutions in theories of four-dimensional gravity coupled to gauge fields and moduli. The c-function is valid for both extremal and non-extremal black holes. It monotonically decreases from infinity and in the static region acquires its minimum value at the horizon, where it equals the entropy of the black hole. Higher dimensional cases, involving pp-form gauge fields, and other generalisations are also discussed.Comment: References adde

    One entropy function to rule them all

    Get PDF
    We study the entropy of extremal four dimensional black holes and five dimensional black holes and black rings is a unified framework using Sen's entropy function and dimensional reduction. The five dimensional black holes and black rings we consider project down to either static or stationary black holes in four dimensions. The analysis is done in the context of two derivative gravity coupled to abelian gauge fields and neutral scalar fields. We apply this formalism to various examples including U(1)3U(1)^3 minimal supergravity.Comment: 29 pages, 2 figures, revised version for publication, details adde

    Arbitrage Opportunities in Misspecified Stochastic volatility Models

    No full text
    There is vast empirical evidence that given a set of assumptions on the real-world dynamics of an asset, the European options on this asset are not efficiently priced in options markets, giving rise to arbitrage opportunities. We study these opportunities in a generic stochastic volatility model and exhibit the strategies which maximize the arbitrage profit. In the case when the misspecified dynamics is a classical Black-Scholes one, we give a new interpretation of the classical butterfly and risk reversal contracts in terms of their (near) optimality for arbitrage strategies. Our results are illustrated by a numerical example including transaction costs.

    Rotating Attractors

    Get PDF
    We prove that, in a general higher derivative theory of gravity coupled to abelian gauge fields and neutral scalar fields, the entropy and the near horizon background of a rotating extremal black hole is obtained by extremizing an entropy function which depends only on the parameters labeling the near horizon background and the electric and magnetic charges and angular momentum carried by the black hole. If the entropy function has a unique extremum then this extremum must be independent of the asymptotic values of the moduli scalar fields and the solution exhibits attractor behaviour. If the entropy function has flat directions then the near horizon background is not uniquely determined by the extremization equations and could depend on the asymptotic data on the moduli fields, but the value of the entropy is still independent of this asymptotic data. We illustrate these results in the context of two derivative theories of gravity in several examples. These include Kerr black hole, Kerr-Newman black hole, black holes in Kaluza-Klein theory, an
    corecore