7,671 research outputs found

    Final-State Interaction as the Origin of the Cronin Effect

    Full text link
    Instead of adhering to the usual explanation of the Cronin effect in terms of the broadening of the parton transverse momentum in the initial state, we show that the enhancement of hadron production at moderate pTp_T in d+Au collisions is due to the recombination of soft and shower partons in the final state. Such a mechanism can readily explain the decrease of the Cronin effect with increasing rapidity. Furthermore, the effect should be larger for protons than for pions.Comment: 4 RevTeX pages including 3 figures and 1 table; Some notational changes and a corrected referenc

    Fluctuation Analysis of Human Electroencephalogram

    Get PDF
    The scaling behaviors of the human electroencephalogram (EEG) time series are studied using detrended fluctuation analysis. Two scaling regions are found in nearly every channel for all subjects examined. The scatter plot of the scaling exponents for all channels (up to 129) reveals the complicated structure of a subject's brain activity. Moment analyses are performed to extract the gross features of all the scaling exponents, and another universal scaling behavior is identified. A one-parameter description is found to characterize the fluctuation properties of the nonlinear behaviors of the brain dynamics.Comment: 4 pages in RevTeX + 6 figures in ep

    Critical Fluctuation of Wind Reversals in Convective Turbulence

    Full text link
    The irregular reversals of wind direction in convective turbulence are found to have fluctuating intervals that can be related to critical behavior. It is shown that the net magnetization of a 2D Ising lattice of finite size fluctuates in the same way. Detrended fluctuation analysis of the wind reversal time series results in a scaling behavior that agrees with that of the Ising problem. The properties found suggest that the wind reversal phenomenon exhibits signs of self-organized criticality.Comment: 4 RevTeX pages + 3 figures in ep

    Cluster Production in Quark-Hadron Phase Transition

    Full text link
    The problem of cluster formation and growth in first-order quark-hadron phase transition in heavy-ion collisions is considered. Behaving as Brownian particles, the clusters carry out random walks and can encounter one another, leading to coalescence and breakup. A simulation of the process in cellular automaton suggests the possibility of a scaling distribution in the cluster sizes. The experimental determination of the cluster-size distribution is urged as a means to find a clear signature of phase transition.Comment: 12 pages + 1 figure. Report # OITS-517. To be published in Phys. Rev. Lett. 71, xxx (1994

    Simultaneous observation of high order multiple quantum coherences at ultralow magnetic fields

    Full text link
    We present a method for the simultaneous observation of heteronuclear multi-quantum coherences (up to the 3rd order), which give an additional degree of freedom for ultralow magnetic field (ULF) MR experiments, where the chemical shift is negligible. The nonequilibrium spin state is generated by Signal Amplification By Reversible Exchange (SABRE) and detected at ULF with SQUID-based NMR. We compare the results obtained by the heteronuclei Correlated SpectroscopY (COSY) with a Flip Angle FOurier Series (FAFOS) method. COSY allows a quantitative analysis of homo- and heteronuclei quantum coherences

    Void Analysis of Hadronic Density Fluctuations at Phase Transition

    Get PDF
    The event-to-event fluctuations of hadron multiplicities are studied for a quark system undergoing second-order phase transition to hadrons. Emphasis is placed on the search for an observable signature that is realistic for heavy-ion collisions. It is suggested that in the 2-dimensional y-phi space the produced particles selected in a very narrow p_T window may exhibit clustering patterns even when integrated over the entire emission time. Using the Ising model to simulate the critical phenomenon and taking into account a p_T distribution that depends on the emission time, we study in the framework of the void analysis proposed earlier and find scaling behavior. The scaling exponents turn out to be larger than the ones found before for pure configurations without mixing. The signature is robust in that it is insensitive to the precise scheme of simulating time evolution. Thus it should reveal whether or not the dense matter created in heavy-ion collisions is a quark-gluon plasma before hadronization.Comment: 11 pages in LaTeX + 6 figures in p

    Charm Correlation as a Diagnostic Probe of Quark Matter

    Get PDF
    The use of correlation between two open-charm mesons is suggested to give information about the nature of the medium created in heavy-ion collisions. Insensitivity to the charm production rate is achieved by measuring normalized cumulant. The acollinearity of the D momenta in the transverse plane is a measure of the medium effect. Its dependence on nuclear size or E_T provides a signature for the formation of quark matter.Comment: 12 pages, no figure

    The Uniqueness Theorem for Entanglement Measures

    Full text link
    We explore and develop the mathematics of the theory of entanglement measures. After a careful review and analysis of definitions, of preliminary results, and of connections between conditions on entanglement measures, we prove a sharpened version of a uniqueness theorem which gives necessary and sufficient conditions for an entanglement measure to coincide with the reduced von Neumann entropy on pure states. We also prove several versions of a theorem on extreme entanglement measures in the case of mixed states. We analyse properties of the asymptotic regularization of entanglement measures proving, for example, convexity for the entanglement cost and for the regularized relative entropy of entanglement.Comment: 22 pages, LaTeX, version accepted by J. Math. Phy

    Weak nonlinearities: A new route to optical quantum computation

    Full text link
    Quantum information processing (QIP) offers the promise of being able to do things that we cannot do with conventional technology. Here we present a new route for distributed optical QIP, based on generalized quantum non-demolition measurements, providing a unified approach for quantum communication and computing. Interactions between photons are generated using weak non-linearities and intense laser fields--the use of such fields provides for robust distribution of quantum information. Our approach requires only a practical set of resources, and it uses these very efficiently. Thus it promises to be extremely useful for the first quantum technologies, based on scarce resources. Furthermore, in the longer term this approach provides both options and scalability for efficient many-qubit QIP.Comment: 7 Pages, 4 Figure

    Further results on the cross norm criterion for separability

    Full text link
    In the present paper the cross norm criterion for separability of density matrices is studied. In the first part of the paper we determine the value of the greatest cross norm for Werner states, for isotropic states and for Bell diagonal states. In the second part we show that the greatest cross norm criterion induces a novel computable separability criterion for bipartite systems. This new criterion is a necessary but in general not a sufficient criterion for separability. It is shown, however, that for all pure states, for Bell diagonal states, for Werner states in dimension d=2 and for isotropic states in arbitrary dimensions the new criterion is necessary and sufficient. Moreover, it is shown that for Werner states in higher dimensions (d greater than 2), the new criterion is only necessary.Comment: REVTeX, 19 page
    • …
    corecore