2,638 research outputs found

    A note on Freiman's theorem in vector spaces

    Full text link
    We show that if A is a subset of F_2^n and |A+A| < K|A| then A is contained in a subspace of size at most 2^{O(K^{3/2}log K)}|A|. This improves on the previous best of 2^{O(K^2)}.Comment: 9 pp. Corrected typos. Updated references

    Adjointness Relations as a Criterion for Choosing an Inner Product

    Full text link
    This is a contribution to the forthcoming book "Canonical Gravity: {}From Classical to Quantum" edited by J. Ehlers and H. Friedrich. Ashtekar's criterion for choosing an inner product in the quantisation of constrained systems is discussed. An erroneous claim in a previous paper is corrected and a cautionary example is presented.Comment: 6 pages, MPA-AR-94-

    On the tensor convolution and the quantum separability problem

    Full text link
    We consider the problem of separability: decide whether a Hermitian operator on a finite dimensional Hilbert tensor product is separable or entangled. We show that the tensor convolution defined for certain mappings on an almost arbitrary locally compact abelian group, give rise to formulation of an equivalent problem to the separability one.Comment: 13 pages, two sections adde

    Power of unentangled measurements on two antiparallel spins

    Full text link
    We consider a pair of antiparallel spins polarized in a random direction to encode quantum information. We wish to extract as much information as possible on the polarization direction attainable by an unentangled measurement, i.e., by a measurement, whose outcomes are associated with product states. We develop analytically the upper bound 0.7935 bits to the Shannon mutual information obtainable by an unentangled measurement, which is definitely less than the value 0.8664 bits attained by an entangled measurement. This proves our main result, that not every ensemble of product states can be optimally distinguished by an unentangled measurement, if the measure of distinguishability is defined in the sense of Shannon. We also present results from numerical calculations and discuss briefly the case of parallel spins.Comment: Latex file, 18 pages, 1 figure; published versio

    Density of states of a two-dimensional electron gas in a non-quantizing magnetic field

    Full text link
    We study local density of electron states of a two-dimentional conductor with a smooth disorder potential in a non-quantizing magnetic field, which does not cause the standart de Haas-van Alphen oscillations. It is found, that despite the influence of such ``classical'' magnetic field on the average electron density of states (DOS) is negligibly small, it does produce a significant effect on the DOS correlations. The corresponding correlation function exhibits oscillations with the characteristic period of cyclotron quantum ℏωc\hbar\omega_c.Comment: 7 pages, including 3 figure

    A Robust Iterative Unfolding Method for Signal Processing

    Full text link
    There is a well-known series expansion (Neumann series) in functional analysis for perturbative inversion of specific operators on Banach spaces. However, operators that appear in signal processing (e.g. folding and convolution of probability density functions), in general, do not satisfy the usual convergence condition of that series expansion. This article provides some theorems on the convergence criteria of a similar series expansion for this more general case, which is not covered yet by the literature. The main result is that a series expansion provides a robust unbiased unfolding and deconvolution method. For the case of the deconvolution, such a series expansion can always be applied, and the method always recovers the maximum possible information about the initial probability density function, thus the method is optimal in this sense. A very significant advantage of the presented method is that one does not have to introduce ad hoc frequency regulations etc., as in the case of usual naive deconvolution methods. For the case of general unfolding problems, we present a computer-testable sufficient condition for the convergence of the series expansion in question. Some test examples and physics applications are also given. The most important physics example shall be (which originally motivated our survey on this topic) the case of pi^0 --> gamma+gamma particle decay: we show that one can recover the initial pi^0 momentum density function form the measured single gamma momentum density function by our series expansion.Comment: 23 pages, 9 figure

    Quantum graphs as holonomic constraints

    Full text link
    We consider the dynamics on a quantum graph as the limit of the dynamics generated by a one-particle Hamiltonian in R^2 with a potential having a deep strict minimum on the graph, when the width of the well shrinks to zero. For a generic graph we prove convergence outside the vertices to the free dynamics on the edges. For a simple model of a graph with two edges and one vertex, we prove convergence of the dynamics to the one generated by the Laplacian with Dirichlet boundary conditions in the vertex.Comment: 28 pages, 3 figure

    Algebras generated by two bounded holomorphic functions

    Full text link
    We study the closure in the Hardy space or the disk algebra of algebras generated by two bounded functions, of which one is a finite Blaschke product. We give necessary and sufficient conditions for density or finite codimension of such algebras. The conditions are expressed in terms of the inner part of a function which is explicitly derived from each pair of generators. Our results are based on identifying z-invariant subspaces included in the closure of the algebra. Versions of these results for the case of the disk algebra are given.Comment: 22 pages ; a number of minor mistakes have been corrected, and some points clarified. Conditionally accepted by Journal d'Analyse Mathematiqu

    Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model-Agnostic Interpretations

    Full text link
    Model-agnostic interpretation techniques allow us to explain the behavior of any predictive model. Due to different notations and terminology, it is difficult to see how they are related. A unified view on these methods has been missing. We present the generalized SIPA (sampling, intervention, prediction, aggregation) framework of work stages for model-agnostic interpretations and demonstrate how several prominent methods for feature effects can be embedded into the proposed framework. Furthermore, we extend the framework to feature importance computations by pointing out how variance-based and performance-based importance measures are based on the same work stages. The SIPA framework reduces the diverse set of model-agnostic techniques to a single methodology and establishes a common terminology to discuss them in future work

    Hidden Symmetry of the Differential Calculus on the Quantum Matrix Space

    Full text link
    A standard bicovariant differential calculus on a quantum matrix space Mat(m,n)q{\tt Mat}(m,n)_q is considered. The principal result of this work is in observing that the Uqs(glmĂ—gln))qU_q\frak{s}(\frak{gl}_m\times \frak{gl}_n))_q is in fact a Uqsl(m+n)U_q\frak{sl}(m+n)-module differential algebra.Comment: 5 page
    • …
    corecore