2,428 research outputs found

    On the use of non-canonical quantum statistics

    Full text link
    We develop a method using a coarse graining of the energy fluctuations of an equilibrium quantum system which produces simple parameterizations for the behaviour of the system. As an application, we use these methods to gain more understanding on the standard Boltzmann-Gibbs statistics and on the recently developed Tsallis statistics. We conclude on a discussion of the role of entropy and the maximum entropy principle in thermodynamics.Comment: 29 pages, uses iopart.cls, major revisions of text for better readability, added a discussion about essentially microcanonical ensemble

    Detection of a Moving Rigid Solid in a Perfect Fluid

    Get PDF
    In this paper, we consider a moving rigid solid immersed in a potential fluid. The fluid-solid system fills the whole two dimensional space and the fluid is assumed to be at rest at infinity. Our aim is to study the inverse problem, initially introduced in [3], that consists in recovering the position and the velocity of the solid assuming that the potential function is known at a given time. We show that this problem is in general ill-posed by providing counterexamples for which the same potential corresponds to different positions and velocities of a same solid. However, it is also possible to find solids having a specific shape, like ellipses for instance, for which the problem of detection admits a unique solution. Using complex analysis, we prove that the well-posedness of the inverse problem is equivalent to the solvability of an infinite set of nonlinear equations. This result allows us to show that when the solid enjoys some symmetry properties, it can be partially detected. Besides, for any solid, the velocity can always be recovered when both the potential function and the position are supposed to be known. Finally, we prove that by performing continuous measurements of the fluid potential over a time interval, we can always track the position of the solid.Comment: 19 pages, 14 figure

    Density of states of a two-dimensional electron gas in a non-quantizing magnetic field

    Full text link
    We study local density of electron states of a two-dimentional conductor with a smooth disorder potential in a non-quantizing magnetic field, which does not cause the standart de Haas-van Alphen oscillations. It is found, that despite the influence of such ``classical'' magnetic field on the average electron density of states (DOS) is negligibly small, it does produce a significant effect on the DOS correlations. The corresponding correlation function exhibits oscillations with the characteristic period of cyclotron quantum ωc\hbar\omega_c.Comment: 7 pages, including 3 figure

    Generalized Induced Norms

    Get PDF
    Let ||.|| be a norm on the algebra M_n of all n-by-n matrices over the complex field C. An interesting problem in matrix theory is that "are there two norms ||.||_1 and ||.||_2 on C^n such that ||A||=max{||Ax||_2: ||x||_1=1} for all A in M_n. We will investigate this problem and its various aspects and will discuss under which conditions ||.||_1=||.||_2.Comment: 8 page

    Crystalline ground states for classical particles

    Full text link
    Pair interactions whose Fourier transform is nonnegative and vanishes above a wave number K_0 are shown to give rise to periodic and aperiodic infinite volume ground state configurations (GSCs) in any dimension d. A typical three dimensional example is an interaction of asymptotic form cos(K_0 r)/r^4. The result is obtained for densities rho >= rho_d where rho_1=K_0/2pi, rho_2=(sqrt{3}/8)(K_0/pi)^2 and rho_3=(1/8sqrt{2})(K_0/pi)^3. At rho_d there is a unique periodic GSC which is the uniform chain, the triangular lattice and the bcc lattice for d=1,2,3, respectively. For rho>rho_d the GSC is nonunique and the degeneracy is continuous: Any periodic configuration of density rho with all reciprocal lattice vectors not smaller than K_0, and any union of such configurations, is a GSC. The fcc lattice is a GSC only for rho>=(1/6 sqrt{3})(K_0/pi)^3.Comment: final versio

    Perturbation theorems for Hele-Shaw flows and their applications

    Full text link
    In this work, we give a perturbation theorem for strong polynomial solutions to the zero surface tension Hele-Shaw equation driven by injection or suction, so called the Polubarinova-Galin equation. This theorem enables us to explore properties of solutions with initial functions close to but are not polynomial. Applications of this theorem are given in the suction or injection case. In the former case, we show that if the initial domain is close to a disk, most of fluid will be sucked before the strong solution blows up. In the later case, we obtain precise large-time rescaling behaviors for large data to Hele-Shaw flows in terms of invariant Richardson complex moments. This rescaling behavior result generalizes a recent result regarding large-time rescaling behavior for small data in terms of moments. As a byproduct of a theorem in this paper, a short proof of existence and uniqueness of strong solutions to the Polubarinova-Galin equation is given.Comment: 25 page

    Microscopic expressions for the thermodynamic temperature

    Full text link
    We show that arbitrary phase space vector fields can be used to generate phase functions whose ensemble averages give the thermodynamic temperature. We describe conditions for the validity of these functions in periodic boundary systems and the Molecular Dynamics (MD) ensemble, and test them with a short-ranged potential MD simulation.Comment: 21 pages, 2 figures, Revtex. Submitted to Phys. Rev.

    Derivation and Improvements of the Quantum Canonical Ensemble from a Regularized Microcanonical Ensemble

    Full text link
    We develop a regularization of the quantum microcanonical ensemble, called a Gaussian ensemble, which can be used for derivation of the canonical ensemble from microcanonical principles. The derivation differs from the usual methods by giving an explanation for the, at the first sight unreasonable, effectiveness of the canonical ensemble when applied to certain small, isolated, systems. This method also allows a direct identification between the parameters of the microcanonical and the canonical ensemble and it yields simple indicators and rigorous bounds for the effectiveness of the approximation. Finally, we derive an asymptotic expansion of the microcanonical corrections to the canonical ensemble for those systems, which are near, but not quite, at the thermodynamical limit and show how and why the canonical ensemble can be applied also for systems with exponentially increasing density of states. The aim throughout the paper is to keep mathematical rigour intact while attempting to produce results both physically and practically interesting.Comment: 17 pages, latex2e with iopar
    corecore