121 research outputs found

    Universal Language Model Fine-tuning for Text Classification

    Full text link
    Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer learning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a language model. Our method significantly outperforms the state-of-the-art on six text classification tasks, reducing the error by 18-24% on the majority of datasets. Furthermore, with only 100 labeled examples, it matches the performance of training from scratch on 100x more data. We open-source our pretrained models and code.Comment: ACL 2018, fixed denominator in Equation 3, line

    Learning to select data for transfer learning with Bayesian Optimization

    Full text link
    Domain similarity measures can be used to gauge adaptability and select suitable data for transfer learning, but existing approaches define ad hoc measures that are deemed suitable for respective tasks. Inspired by work on curriculum learning, we propose to \emph{learn} data selection measures using Bayesian Optimization and evaluate them across models, domains and tasks. Our learned measures outperform existing domain similarity measures significantly on three tasks: sentiment analysis, part-of-speech tagging, and parsing. We show the importance of complementing similarity with diversity, and that learned measures are -- to some degree -- transferable across models, domains, and even tasks.Comment: EMNLP 2017. Code available at: https://github.com/sebastianruder/learn-to-select-dat

    Multi-task Learning of Pairwise Sequence Classification Tasks Over Disparate Label Spaces

    Get PDF
    We combine multi-task learning and semi-supervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of sequence classification tasks with disparate label spaces. We outperform strong single and multi-task baselines and achieve a new state-of-the-art for topic-based sentiment analysis.Comment: To appear at NAACL 2018 (long

    Towards a continuous modeling of natural language domains

    Full text link
    Humans continuously adapt their style and language to a variety of domains. However, a reliable definition of `domain' has eluded researchers thus far. Additionally, the notion of discrete domains stands in contrast to the multiplicity of heterogeneous domains that humans navigate, many of which overlap. In order to better understand the change and variation of human language, we draw on research in domain adaptation and extend the notion of discrete domains to the continuous spectrum. We propose representation learning-based models that can adapt to continuous domains and detail how these can be used to investigate variation in language. To this end, we propose to use dialogue modeling as a test bed due to its proximity to language modeling and its social component.Comment: 5 pages, 3 figures, published in Uphill Battles in Language Processing workshop, EMNLP 201

    Latent Multi-task Architecture Learning

    Full text link
    Multi-task learning (MTL) allows deep neural networks to learn from related tasks by sharing parameters with other networks. In practice, however, MTL involves searching an enormous space of possible parameter sharing architectures to find (a) the layers or subspaces that benefit from sharing, (b) the appropriate amount of sharing, and (c) the appropriate relative weights of the different task losses. Recent work has addressed each of the above problems in isolation. In this work we present an approach that learns a latent multi-task architecture that jointly addresses (a)--(c). We present experiments on synthetic data and data from OntoNotes 5.0, including four different tasks and seven different domains. Our extension consistently outperforms previous approaches to learning latent architectures for multi-task problems and achieves up to 15% average error reductions over common approaches to MTL.Comment: To appear in Proceedings of AAAI 201

    Strong Baselines for Neural Semi-Supervised Learning under Domain Shift

    Get PDF
    Novel neural models have been proposed in recent years for learning under domain shift. Most models, however, only evaluate on a single task, on proprietary datasets, or compare to weak baselines, which makes comparison of models difficult. In this paper, we re-evaluate classic general-purpose bootstrapping approaches in the context of neural networks under domain shifts vs. recent neural approaches and propose a novel multi-task tri-training method that reduces the time and space complexity of classic tri-training. Extensive experiments on two benchmarks are negative: while our novel method establishes a new state-of-the-art for sentiment analysis, it does not fare consistently the best. More importantly, we arrive at the somewhat surprising conclusion that classic tri-training, with some additions, outperforms the state of the art. We conclude that classic approaches constitute an important and strong baseline.Comment: ACL 201
    corecore