639 research outputs found
Surficial geology of northern Griggs County, North Dakota
Griggs County, situated in the Western Lake section of the Central Lowland province, covers an area of 720 square miles in east-central North Dakota. The surface of the county is mantled with three, or possibly four Pleistocene drift sheets, separated by outwash deposits. These drift sheets lie unconformably on the Cretaceous Pierre Shale which is exposed in the Sheyenne River valley and the Binford Hills. Because the drift sheets have similar lithologic and physical characteristics, and are all late Wisconsin in age, they fulfill the requirements for a lithostratigraphic unit and are being considered for designation as part of the Pleistocene Lostwood Formation.
As the late Wisconsin glacier receded and thinned in east-central North Dakota, it became controlled by topographic highs, and lobation occurred. One of these lobes; the Leeds, retreated across Griggs County, depositing the McHenry-I, McHenry II, Cooperstown, and Luverne end moraines during temporary stillstands. When the Leeds lobe retreated from the Cooperstown end moraine position, a large block of ice became detached and a complex of eskers, kames, and kettles was formed. As the ice terminus reached the North Vikings end moraine position, the Girard Lake spillway of glacial. Lake Souris came into existence, causing meltwater to flow into Griggs County and excavate the Sheyenne River valley.
In western Griggs County, a large buried valley, the Spiritwood aquifer, occurs at the base of the Lostwood Formation. It is filled with outwash sediments that are a potential source of large quantities of ground water
Recruitment Sources of Channel and Blue Catfishes Inhabiting the Middle Mississippi River
Insight into environments that contribute recruits to adult fish stocks in riverine systems is vital for effective population management and conservation. Catfish are an important recreational species in the Mississippi River and are commercially harvested. However, contributions of main channel and tributary habitats to catfish recruitment in large rivers are unknown. Stable isotope and trace elemental signatures in otoliths are useful for determining environmental history of fishes in a variety of aquatic systems, including the Mississippi River. The objectives of this study were to identify the principal natal environments of channel catfish Ictalurus punctatus and blue catfish I. furcatus in the middle Mississippi River (MMR) using otolith stable oxygen isotopic composition (δ18O) and strontium:calcium ratios (Sr:Ca). Catfishes were sampled during July-October 2013-2014 and lapilli otoliths were analyzed for δ18O and Sr:Ca. Water samples from the MMR and tributaries were collected seasonally from 2006-2014 to characterize site-specific signatures. Persistent differences in water δ18O and Sr:Ca among the MMR and tributaries (including the upper Mississippi, Illinois, and Missouri rivers as well as smaller tributaries) were evident, enabling identification of natal environment for individual fish. Blue and channel catfish stocks in the MMR primarily recruited from the large rivers (Missouri and Mississippi) in our study area, with minimal contributions from smaller tributaries. Recruitment and year class strength investigations and efforts to enhance spawning and nursery habitats should be focused in the large rivers with less emphasis in smaller tributaries
Pink boll worm of cotton
The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311
Long-Term PIT and T-Bar Anchor Tag Retention Rates in Adult Muskellunge
Mark-recapture studies require knowledge of tag retention rates specific to tag types, fish species and size, and study duration. We determined the probability of tag loss for passive integrated transponder (PIT) tags implanted into dorsal musculature, T-bar anchor tags attached to dorsal pterygiophores, and loss of both tags in relation to years post-tagging for double-marked adult muskellunge Esox masquinongy over a 10 year period. We also used PIT tags as a benchmark to assess the interactive effects of fish length at tagging, sex, and years post-tagging on T-bar anchor tag loss rates. Only five instances of PIT tag loss were identified; the calculated probability of a fish losing its PIT tag was consistently \u3c 1.0% for up to 10 years post-tagging. The probability of T-bar anchor tag loss by muskellunge was related to the number of years post-tagging and total length of fish at tagging. T-bar anchor tag loss rate one year after tagging was 6.5%. Individuals \u3c 750 mm total length at tagging had anchor tag loss rates \u3c 10% for up to 6 years after tagging. However, the proportion of fish losing T-bar anchor tags steadily increased with increasing years post-tagging (~30% after 6 years) for larger muskellunge. Fish gender did not influence probability of T-bar anchor tag loss. Our results indicate that T-bar anchor tags are best suited for short-term applications (≤ 1 year duration) involving adult muskellunge. We recommend use of PIT tags for longer-term tagging studies, particularly for muskellunge \u3e 750 mm total length
Halide substitution in Ca(BH4)2
Halide substitution in Ca(BH4)2 has been investigated in ball milled mixtures of Ca(BH4)2 and CaX2 (X \ubc F, Cl, Br) with different molar ratios. In situ synchrotron radiation powder X-ray diffraction measurements of Ca(BH4)2 + CaCl2 with 1 : 0.5, 1 : 1 and 1 : 2 molar ratios reveal that no substitution of Cl for BH4 occurs from the ball milling process. However, substitution readily occurs after the transitions from a- to b-Ca(BH4)2 and from orthorhombic to tetragonal CaCl2 upon heating above 250 C, which is evident from both contraction of the unit cell and changes in the relative Bragg peak intensities, in agreement with theoretical calculations. Rietveld analyses of the obtained b-Ca((BH4)1xClx)2 solid solutions indicate compositions from x \ubc 0 to 0.6, depending on the amount of CaCl2 in the parent mixtures. b-Ca((BH4)0.5Cl0.5)2 was investigated by differential scanning calorimetry and has a slightly higher decomposition temperature compared to pure Ca(BH4)2. No substitution with CaF2 or CaBr2 is observed
Effect of the partial replacement of CaH2 with CaF2 in the Mixed System CaH2 + MgB2
In this work the effect of a partial replacement of CaH2 with CaF2 on the sorption properties of the system CaH2 + MgB2 has been studied. The first five hydrogen absorption and four desorption reactions of the CaH2 + MgB2 and 3CaH2 + CaF2 + 4MgB2 systems were investigated by means of volumetric measurements, high-pressure differential scanning calorimetric technique (HP-DSC), 11B and 19F MAS NMR spectroscopy, and in situ synchrotron radiation powder X-ray diffraction (SR-PXD). It was observed that already during the mixing of the reactants formation of a nonstoichiometric CaF2-xHx solid solution takes place. Formation of the CaF2-xHx solid solution sensibly affects the overall hydrogen sorption reactions of the system CaH2 + MgB2
- …