63 research outputs found

    Order parameter model for unstable multilane traffic flow

    Full text link
    We discuss a phenomenological approach to the description of unstable vehicle motion on multilane highways that explains in a simple way the observed sequence of the phase transitions "free flow -> synchronized motion -> jam" as well as the hysteresis in the transition "free flow synchronized motion". We introduce a new variable called order parameter that accounts for possible correlations in the vehicle motion at different lanes. So, it is principally due to the "many-body" effects in the car interaction, which enables us to regard it as an additional independent state variable of traffic flow. Basing on the latest experimental data (cond-mat/9905216) we assume that these correlations are due to a small group of "fast" drivers. Taking into account the general properties of the driver behavior we write the governing equation for the order parameter. In this context we analyze the instability of homogeneous traffic flow manifesting itself in both of the mentioned above phase transitions where, in addition, the transition "synchronized motion -> jam" also exhibits a similar hysteresis. Besides, the jam is characterized by the vehicle flows at different lanes being independent of one another. We specify a certain simplified model in order to study the general features of the car cluster self-formation under the phase transition "free flow synchronized motion". In particular, we show that the main local parameters of the developed cluster are determined by the state characteristics of vehicle motion only.Comment: REVTeX 3.1, 10 pages with 10 PostScript figure

    Non-adiabatic small polaron hopping in the n=3 Ruddlesden-Popper compound Ca4Mn3O10

    Get PDF
    Magnetotransport properties of the compound Ca4Mn3O10 are interpreted in terms of activated hopping of small magnetic polarons in the non-adiabatic regime. Polarons are most likely formed around Mn3+ sites created by oxygen substoichiometry. The application of an external field reduces the size of the magnetic contribution to the hopping barrier and thus produces an increase in the conductivity .We argue that the change in the effective activation energy around TN is due to the crossover to VRH conduction as antiferromagnetic order sets in.Comment: 29 pages, 7 figure

    Lowering the thermal conductivity of Sr(Ti0.8Nb0.2)O3 by SrO and CaO doping: microstructure and thermoelectric properties

    No full text
    Excess SrO and CaO were added to the Sr(Ti0.8Nb0.2)O3 thermoelectric material, which was structurally compensated by the formation of Ruddlesden–Popper-type planar faults with the compositions SrO and/or (Sr, Ca)O. Both types of doping significantly changed the original isotropic Sr(Ti0.8Nb0.2)O3 microstructure and resulted in the formation of lamellar Ruddlesden–Popper-type phases within the Sr(Ti0.8Nb0.2)O3 grains. Three-dimensional networks of single Ruddlesden–Popper-type faults were also observed in the Sr(Ti0.8Nb0.2)O3 for both types of doping. The combination of both structural features significantly lowered the thermal conductivity in comparison with Sr(Ti0.8Nb0.2)O3 due to the enhanced phonon scattering observed at the planar faults, which proves that introducing such defects is a promising method for lowering the thermal conductivity of the Sr(Ti0.8Nb0.2)O3 thermoelectric material. The highest figure of merit (ZT = 0.08) was achieved with CaO doping, since the significantly reduced thermal conductivity was accompanied by an increased power factor
    • …
    corecore