2,432 research outputs found

    Excess entropy, Diffusivity and Structural Order in liquids with water-like anomalies

    Full text link
    The excess entropy, Se, defined as the difference between the entropies of the liquid and the ideal gas under identical density and temperature conditions, is shown to be the critical quantity connecting the structural, diffusional and density anomalies in water-like liquids. Based on simulations of silica and the two-scale ramp liquids, water-like density and diffusional anomalies can be seen as consequences of a characteristic non-monotonic density dependence of Se. The relationship between excess entropy, the order metrics and the structural anomaly can be understood using a pair correlation approximation to Se.Comment: 9 pages, 5 figues in ps forma

    Scanning electron microscopic comparison of endophallus of Apis cerana and Apis mellifera

    Get PDF
    During the present investigations, the detailed morphoarchitecture of the male genitalia viz., the endophallus of the drone of A.cerana F. and A.mellifera L. was scanned under the electron microscope. Endophallus of each species was studied for its unique characteristics. Significant interspecific differences were observed in the 2 different species. These differences highlight the reproductive isolation in the genus. These species specific differences in the endophallus are highlighted in the paper

    BORAZANs:  Tunable Fluorophores Based on 2-(Pyrazolyl)aniline Chelates of Diphenylboron

    Get PDF
    The reaction between 2-pyrazolyl-4-X-anilines, H(pzAnX), (X = para-OMe (L1), Me (L2), H (L3), Cl (L4), CO2Et (L5), CF3 (L6), CN (L7)) and triphenylboron in boiling toluene affords the respective, highly emissive N,N‘-boron chelate complexes, BPh2(pzAnX) (X = para-OMe (1), Me (2), H (3), Cl (4), CO2Et (5), CF3 (6), CN (7)) in high yield. The structural, electrochemical, and photophysical properties of the new boron complexes can be fine-tuned by varying the electron-withdrawing or -donating power of the para-aniline substituent (delineated by the substituent\u27s Hammett parameter). Those complexes with electron-withdrawing para-aniline substituents such as CO2Et (5), CF3 (6), and CN (7) have more planar chelate rings, more ‘quinoidal\u27 disortion in the aniline rings, greater chemical stability, higher oxidation potentials, and more intense (φF = 0.81 for 7 in toluene), higher-energy (blue) fluorescent emission compared to those with electron-donating substituents. Thus, for 1 the oxidation potential is 0.53 V versus Ag/AgCl (compared to 1.12 V for 7), and the emission is tuned to the yellow-green but at an expense in terms of lower quantum yields (φF = 0.07 for 1 in toluene) and increased chemical reactivity. Density functional calculations (B3LYP/6-31G*) on PM3 energy-minimized structures of the ligands and boron complexes reproduced experimentally observed data and trends and provided further insight into the nature of the electronic transitions

    Scanning electron microscopic studies on tongue of open-nesting honey bees Apis dorsata F. and Apis florea F. (Hymenoptera: Apidae)

    Get PDF
    Taste stimuli play vital role in the life of honey bees. Sensory structures observed on tongue of the honey bees with the help of Scanning electron microscopy (SEM) have become an important tool in analyzing honey bee biodiversity which offers an advanced diagnostic tool to study honey bee biogeography and determine adaptive variations to native flora. Tongue of honey bees present a high geographic variability in regard to the floral resources visited by the bees. The present study has determined to determine differences in the tongue ofopen-nesting bees by scanning electron microscopy of Apis dorsata and Apis florea. The two bees showed distinct morphological variations with respect to the lapping and sucking apparatus. It was observed that the ridges on the proximal region exhibited rough surface on A.dorsata whereas spinous in case of A.florea. Moreover, the arrangement of hair in the middle part of the tongue also differed in the two species. The shape of flabellum differed in the two species reason being the influence of native flora. It was observed that the shape of flabellum was oval in A.dorsata whereas in A.florea it was triangular. These differences indicated for the role of native flora and honey bee biodiversity

    Ultramorphology of antennal sensilla of open-nesting honey bees Apis florea F. and Apis dorsata F. (Hymenoptera: Apidae)

    Get PDF
    Antenna of honey bees is geniculate and has been known to possess a wide variety of sensilla. The sensilla are sensitive to odor, temperature, humidity, air pressure and gustatory stimuli. In the present investigation, ultrastructural study on the antenna of the two open-nesting worker honey bees- Apis florea F. - the dwarf honey bee and A. dorsata F. - the giant honey showed considerable amount of variation in the types and distribution pattern of sensilla in the two species. The antennal form as well as the sensilla arrangement has been suggested to be adapted to the pheromone perception need of regarding a particular species
    • …
    corecore