159 research outputs found

    Redox potentials of aryl derivatives from hybrid functional based first principles molecular dynamics

    Get PDF
    Acknowledgements We acknowledge the National Science Foundation of China (No. 41222015, 41273074, 41572027 and 21373166), Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (No. 201228), Newton International Fellowship Program and the financial support from the State Key Laboratory at Nanjing University. We are grateful to the High Performance Computing Center of Nanjing University for allowing us to use the IBM Blade cluster system. Open access via RSC Gold for GoldPeer reviewedPublisher PD

    Acidity constants and redox potentials of uranyl ions in hydrothermal solutions

    Get PDF
    Acknowledgements We thank Matthias Krack for supplying us with the pseudopotential and basis sets for U. We acknowledge the National Science Foundation of China (No. 41222015, 41273074, 41572027 and 21373166), Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 201228), Newton International Fellowship Program and the financial support from the State Key Laboratory at Nanjing University. We are grateful to the High Performance Computing Center of Nanjing University for allowing us to use the IBM Blade cluster system. Open access via RSC Gold 4 Gold.Peer reviewedPublisher PD

    Sensitivity of a high-speed rail development on supply chain and logistics via air-rail-road freight transportation

    Get PDF
    <jats:p>The casual effect and synergy of high-speed rail development on the modal transport changes in supply chain and logistics have not been considered well during the initial phase of any rail project design and development. This has impaired the systems integration and connectivity among the modes of transport in a region. In the United Kingdom, High Speed 2, a large-scale railway project with a planned completion date in 2033, affects many transport stakeholders. The project influences the existing transport systems, but the transport systems integration design has not been well depicted, resulting in a pressing concern on systems connectivity and social value. This is evident by many public protests along the planned route of the project. Therefore, it is important to evaluate different aspects for any possible changes in supply chains caused by the development of high-speed rail networks. This paper is the world's first to provide the sensitivity analysis of supply chains <jats:italic>via</jats:italic> air-rail-road freight transportation and logistics stemming from the High Speed 2 case by the rigorous assessments into the capacity, performance and environmental changes that may follow the project’s implementation. The research proposes a new method for estimation of consequences from a new transport project construction. The research findings demonstrate slight beneficial changes in freight transportation and logistics with a high potential for development; and reveal the project’s weaknesses and opportunities for better systems integration and business synergy.</jats:p&gt

    Design and Testing of a 100-mN Class Water Micropropulsion System Using Wire-Fed Magnesium Combustion

    Get PDF
    In this study, the brand-new micropropulsion system is introduced to cover the thrust performances shorthanded by the exiting systems. It uses water as an oxidizer and a magnesium wire as a fuel. We constructed the lab-scale model of this micropropulsion system, and conducted several experiments to obtain the reaction rate of magnesium wire in water-vapor flow. Reaction rate showed almost proportional dependence on water-vapor mass flow rate. We constructed the revised version of lab-scale model, and will continue experiments for detailed analysis of combustion

    Investigation on the Rock-Fragmentation Process of Conical-Shaped TBM Cutterhead in Extremely Hard Rock Ground

    Get PDF
    Conical-shaped cutterhead is one type of tunnel boring machine (TBM) cutterhead which may have advantage of high rock-breaking efficiency in extremely hard rock ground. This study investigated the rock-fragmentation process of disc cutters on the conical-shaped cutterhead via a series of numerical simulations that had been verified by laboratory rock-fragmentation tests. Firstly, the rock-fragmentation numerical model of the six cutters in the 'flat-cone' contiguous part was built based on cutting mode analysis of the conical-shape cutterhead. The rock sample in the numerical model was synthesized using a grain-based discrete element method (GB-DEM) and the reliability of this approach was verified via scaled rock-fragmentation tests conducted on a self-developed linear cutting machine (LCM). Then, a series of numerical simulations were conducted to study the influence of cutterhead cone angle, cutter spacing, and cutter installation angle on the rock-fragmentation performance. The results were as follows: 1) the nature of rock fragmentation in the cone area is the rock fragmentation under side free-face condition; 2) the penetration specific energy can be reduced and thus the rock-fragmentation efficiency can be improved by appropriately increasing the conical angle, reducing the cutter spacing, and increasing the cutter installation angle; 3) for the studied granite, the optimal conical angle is 25°, the cutter spacing is suggested to be no more than 70 mm, and the cutter tilt angle is suggested to be no more than 3°. The results obtained in this paper can be used as guidance for the design of the conical-shaped cutterhead

    Electric-field induced droplet vertical vibration and horizontal motion: Experiments and simulations

    Full text link
    In this work, Electrowetting on Dielectric (EWOD) and electrostatic induction (ESI) are employed to manipulate droplet on the PDMS-ITO substrate. Firstly, we report large vertical vibrations of the droplet, induced by EWOD, within a voltage range of 40 to 260 V. The droplet's transition from a vibrating state to a static equilibrium state are investigated in detail. It is indicated that the contact angle changes synchronously with voltage during the vibration. The electric signal in the circuit is measured to analyze the vibration state that varies with time. By studying the influence of driving voltage on the contact angle and the amplitude in the vibration, it is shown that the saturation voltage of both contact angle and amplitude is about 120 V. The intrinsic connection between contact angle saturation and amplitude saturation is clarified by studying the surface energy of the droplet. A theoretical model is constructed to numerically simulate the vibration morphology and amplitude of the droplet. Secondly, we realize the horizontal motion of droplets by ESI at the voltage less than 1000 V. The charge and electric force on the droplet are numerically calculated. The frictional resistance coefficients of the droplet are determined by the deceleration of the droplet. Under consideration of frictional resistance of the substrate and viscous resistance of the liquid, the motion of the droplet is calculated at 400 V and 1000 V, respectively. This work introduces a new method for manipulating various forms of droplet motion using the single apparatus

    Impact of high-frequency nonlinear internal waves on plankton dynamics in Massachusetts Bay

    Get PDF
    Author Posting. © Sears Foundation for Marine Research, 2010. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 68 (2010): 259-281, doi:10.1357/002224010793721415.A simple Nutrient-Phytoplankton-Zooplankton (NPZ) model was coupled with the non-hydrostatic Finite-Volume Coastal Ocean Model (FVCOM-NH) to study the impact of high-frequency nonlinear internal waves on plankton dynamics in Massachusetts Bay (MB) during the stratified summer season. The temporal and spatial variability of phytoplankton concentration follows the vertical isopycnal displacement to the lowest order as the waves are generated by the semidiurnal tidal flow over Stellwagen Bank (SB) and propagate westward across MB. The tidally-averaged distribution of phytoplankton is characterized by three distinct zones of low subsurface concentration: (I) the western flank of Stellwagen Bank; (II) the center of Stellwagen Basin; and (III) the upper western flank of Stellwagen Basin. The result of a model dye experiment suggests that these zones are created by the following physical processes which are dominant in each zone: (I) hydraulic jump; (II) strong internal wave-tidal current nonlinear interaction; and (III) energetic internal wave dissipation and subsequent mixing processes. The nonlinear interaction of the internal waves and offshore tidal currents significantly enhances the vertical velocity, and increases wave dissipation, thus causing an onshore transport of phytoplankton in zone II. Although the phytoplankton patchy structure can be produced using the hydrostatic FVCOM, the resulting phytoplankton concentration is overestimated due to the unrealistic intensification of vertical velocity and thus vertical nutrient flux from the deep water. It suggests that non-hydrostatic dynamics should be considered for certain small-scale biological processes that are driven primarily by the physics.This project is supported by NOAA grants DOC/NOAA/NA04NMF4720332 and DOC/NOAA/NA05NMF4721131, US GLOBEC Northwest Atlantic/Georges Bank Program NSF grants (OCE-0234545; OCE-0227679; OCE-0606928; OCE-0712903; OCE-0732084; OCE- 0726851), and MIT Sea Grant funds (2006-RC-103, 2010-R/RC-116) and NOAA NERACOOS grant NA100558 for the UMassD team, and a NOAA grant (NA-17RJ1223) for R. C. Beardsley. C. Chen’s contribution is also supported by Shanghai Ocean University International Cooperation Program (No. A-2302–10-0003), the Program of Science and Technology Commission of Shanghai Municipality (No. 09320503700), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (Project number: J50702), and Zhi jiang Scholar and 111 project funds of the State Key Laboratory for Estuarine and Coastal Research, East China Normal University (ECNU)

    The m6A Reader IGF2BP2 Regulates Macrophage Phenotypic Activation and Inflammatory Diseases by Stabilizing TSC1 and PPARγ.

    Full text link
    peer reviewedPhenotypic polarization of macrophages is regulated by a milieu of cues in the local tissue microenvironment. Currently, little is known about how the intrinsic regulators modulate proinflammatory (M1) versus prohealing (M2) macrophages activation. Here, it is observed that insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 2 (IGF2BP2)-deleted macrophages exhibit enhanced M1 phenotype and promote dextran sulfate sodium induced colitis development. However, the IGF2BP2-/- macrophages are refractory to interleukin-4 (IL-4) induced activation and alleviate cockroach extract induced pulmonary allergic inflammation. Molecular studies indicate that IGF2BP2 switches M1 macrophages to M2 activation by targeting tuberous sclerosis 1 via an N6-methyladenosine (m6A)-dependent manner. Additionally, it is also shown a signal transducer and activators of transcription 6 (STAT6)-high mobility group AT-hook 2-IGF2BP2-peroxisome proliferator activated receptor-γ axis involves in M2 macrophages differentiation. These findings highlight a key role of IGF2BP2 in regulation of macrophages activation and imply a potential therapeutic target of macrophages in the inflammatory diseases
    corecore