46 research outputs found
Screening therapeutic EMT blocking agents in a three-dimensional microenvironment
Epithelial–mesenchymal transition (EMT) plays a critical role in the early stages of dissemination of carcinoma leading to metastatic tumors, which are responsible for over 90% of all cancer-related deaths. Current therapeutic regimens, however, have been ineffective in the cure of metastatic cancer, thus an urgent need exists to revisit existing protocols and to improve the efficacy of newly developed therapeutics. Strategies based on preventing EMT could potentially contribute to improving the outcome of advanced stage cancers. To achieve this goal new assays are needed to identify targeted drugs capable of interfering with EMT or to revert the mesenchymal-like phenotype of carcinoma to an epithelial-like state. Current assays are limited to examining the dispersion of carcinoma cells in isolation in conventional 2-dimensional (2D) microwell systems, an approach that fails to account for the 3-dimensional (3D) environment of the tumor or the essential interactions that occur with other nearby cell types in the tumor microenvironment. Here we present a microfluidic system that integrates tumor cell spheroids in a 3D hydrogel scaffold, in close co-culture with an endothelial monolayer. Drug candidates inhibiting receptor activation or signal transduction pathways implicated in EMT have been tested using dispersion of A549 lung adenocarcinoma cell spheroids as a metric of effectiveness. We demonstrate significant differences in response to drugs between 2D and 3D, and between monoculture and co-culture.Singapore. National Research Foundation (Singapore MIT Alliance for Research and Technology's BioSystems and Micromechanics Inter-Disciplinary Research programme)National University of Singapore (Cancer Science Institute)Singapore. Agency for Science, Technology and ResearchSingapore. Institute of Molecular and Cell Biology (IMCB core funding A*STAR
Screening therapeutic EMT blocking agents in a three-dimensional microenvironment
Epithelial–mesenchymal transition (EMT) plays a critical role in the early stages of dissemination of carcinoma leading to metastatic tumors, which are responsible for over 90% of all cancer-related deaths. Current therapeutic regimens, however, have been ineffective in the cure of metastatic cancer, thus an urgent need exists to revisit existing protocols and to improve the efficacy of newly developed therapeutics. Strategies based on preventing EMT could potentially contribute to improving the outcome of advanced stage cancers. To achieve this goal new assays are needed to identify targeted drugs capable of interfering with EMT or to revert the mesenchymal-like phenotype of carcinoma to an epithelial-like state. Current assays are limited to examining the dispersion of carcinoma cells in isolation in conventional 2-dimensional (2D) microwell systems, an approach that fails to account for the 3-dimensional (3D) environment of the tumor or the essential interactions that occur with other nearby cell types in the tumor microenvironment. Here we present a microfluidic system that integrates tumor cell spheroids in a 3D hydrogel scaffold, in close co-culture with an endothelial monolayer. Drug candidates inhibiting receptor activation or signal transduction pathways implicated in EMT have been tested using dispersion of A549 lung adenocarcinoma cell spheroids as a metric of effectiveness. We demonstrate significant differences in response to drugs between 2D and 3D, and between monoculture and co-culture.Singapore. National Research Foundation (Singapore MIT Alliance for Research and Technology's BioSystems and Micromechanics Inter-Disciplinary Research programme)National University of Singapore (Cancer Science Institute)Singapore. Agency for Science, Technology and ResearchSingapore. Institute of Molecular and Cell Biology (IMCB core funding A*STAR
Epithelial-to-mesenchymal transition: lessons from development, insights into cancer and the potential of EMT-subtype based therapeutic intervention
Epithelial-to-mesenchymal transition (EMT) is a fundamental developmental process wherein polarized epithelial cells lose their junctional architecture and apical-basal polarity to become motile mesenchymal cells, and there is emerging evidence for its role in propagating tumor dissemination. While many multifaceted nodules converge onto the EMT program, in this review we will highlight the fundamental biology of the signaling schemas that enable EMT. In many cancers, the property of tumor dissemination and metastasis is closely associated with re-enabling developmental properties such as EMT. We discuss the molecular complexity of the tumor heterogeneity in terms of EMT-based gene expression molecular subtypes, and the rewiring of critical signaling nodules in the subtypes displaying higher degrees of EMT can be therapeutically exploited. Specifically in the context of a deadly malignancy such as ovarian cancer where there are no defined mutations or limited biomarkers for developing targeted therapy or personalized medicine, we highlight the importance of identifying EMT-based subtypes that will improve therapeutic intervention. In ovarian cancer, the poor prognosis mesenchymal 'Mes' subtype presents with amplified signaling of the receptor tyrosine kinase (RTK) AXL, extensive crosstalk with other RTKs such as cMET, EGFR and HER2, and sustained temporal activation of extracellular-signal regulated kinase (ERK) leading to induction of EMT transcription factor Slug, underscoring a pathway addiction in Mes that can be therapeutically targeted. We will further examine the emergence of therapeutic modalities in these EMT subtypes and finally conclude with potential interdisciplinary biophysical methodologies to provide additional insights in deciphering the mechanistic and biochemical aspects of EMT.
This review intends to provide an overview of the cellular and molecular changes accompanying epithelial-to-mesenchymal transition (EMT) in development and the requisition of this evolutionarily conserved pathway in cancer progression and metastatic disease. Specifically, in a heterogeneous disease such as ovarian cancer lacking defined targetable mutations, the identification of EMT-based subtypes has opened avenues to tailor precision personalized medicine. In particular, using the oncogenic RTK AXL as an example, we will highlight how this classification enables EMT-subtype specific identification of targets that could improve treatment options for patients and how there is a growing need for biophysical approaches to model dynamic processes such as EMT
Regulating epithelial-mesenchymal plasticity from 3D genome organization
Abstract Epithelial-mesenchymal transition (EMT) is a dynamic process enabling polarized epithelial cells to acquire mesenchymal features implicated in development and carcinoma progression. As our understanding evolves, it is clear the reversible execution of EMT arises from complex epigenomic regulation involving histone modifications and 3-dimensional (3D) genome structural changes, leading to a cascade of transcriptional events. This review summarizes current knowledge on chromatin organization in EMT, with a focus on hierarchical structures of the 3D genome and chromatin accessibility changes
Nodal reactive proliferation of monocytoid B-cells may represent atypical memory B-cells
Background: Reactive lymphadenopathies such as toxoplasmosis and cytomegalovirus lymphadenitis are associated with monocytoid cell proliferation. Monocytoid cells are B-lymphocytes with an undetermined subset. Methods: Using digital spatial profiling whole transcriptome analyses, this study compared monocytoid and control B-cells. The B-cell subset of monocytoid cells was assigned according to gene expression profiles. Results: This study identified 466 differentially expressed genes between monocytoid and control B-cells. The cellular deconvolution algorithm identified monocytoid cells as memory B-cells instead of as naïve B-cells. A comparison of the upregulated genes revealed that atypical memory B-cells had the largest number of genes overlapping with monocytoid cells compared with other memory B-cell subsets. Atypical memory B-cell markers, namely TBX21 (T-bet), FCRL4 (IRTA1), and ITGAX (CD11c), were all upregulated in monocytoid cells. Similar to atypical memory B-cells, monocytoid cells exhibited (1) upregulated transcription factors (TBX21, TOX), (2) upregulated genes associated with B-cell inhibition (FCRL5, FCRL4) and downregulated genes associated with B-cell activation (PIK3CG, NFKB1A, CD40), (3) downregulated cell cycle-related genes (CDK6, MYC), and (4) downregulated cytokine receptors (IL4R). This study also analyzed the expression of monocytoid cell signature genes in various memory B-cell subsets. Atypical memory B-cells exhibited a gene expression pattern similar to that of monocytoid cells, but other memory B-cell subsets did not. Furthermore, monocytoid cells and marginal zone lymphomas differed in gene expression profiles. Conclusion: Spatial transcriptomic analyses indicated that monocytoid cells may be atypical memory B-cells
Targeting the AXL signaling pathway in ovarian cancer
In a recent publication in Science Signaling, we showed that a Mes molecular subtype of epithelial ovarian cancer (EOC) harboring epithelial-mesenchymal transition (EMT) features has a unique signaling network downstream of the GAS6/AXL pathway. Our finding leads to a potential strategy for treating the Mes subtype of EOC by targeting AXL