56 research outputs found
Triheptanoin: A Rescue Therapy for Cardiogenic Shock in Carnitine-acylcarnitine Translocase Deficiency.
Carnitine-acylcarnitine translocase (CACT) deficiency is a rare long-chain fatty acid oxidation disorder (LC-FAOD) with high mortality due to cardiomyopathy or lethal arrhythmia. Triheptanoin (UX007), an investigational drug composed of synthetic medium odd-chain triglycerides, is a novel therapy in development for LC-FAOD patients. However, cases of its safe and efficacious use to reverse severe heart failure in CACT deficiency are limited. Here, we present a detailed report of an infant with CACT deficiency admitted in metabolic crisis that progressed into severe cardiogenic shock who was successfully treated by triheptanoin. The child was managed, thereafter, on triheptanoin until her death at 3 years of age from a cardiopulmonary arrest in the setting of acute respiratory illness superimposed on chronic hypercarbic respiratory failure
Neurocognitive outcome and mental health in children with tyrosinemia type 1 and phenylketonuria: A comparison between two genetic disorders affecting the same metabolic pathway
Tyrosinemia type 1 (TT1) and phenylketonuria (PKU) are both inborn errors of phenylalanine–tyrosine metabolism. Neurocognitive and behavioral outcomes have always featured in PKU research but received less attention in TT1 research. This study aimed to investigate and compare neurocognitive, behavioral, and social outcomes of treated TT1 and PKU patients. We included 33 TT1 patients (mean age 11.24 years; 16 male), 31 PKU patients (mean age 10.84; 14 male), and 58 age- and gender-matched healthy controls (mean age 10.82 years; 29 male). IQ (Wechsler-subtests), executive functioning (the Behavioral Rating Inventory of Executive Functioning), mental health (the Achenbach-scales), and social functioning (the Social Skills Rating System) were assessed. Results of TT1 patients, PKU patients, and healthy controls were compared using Kruskal–Wallis tests with post-hoc Mann–Whitney U tests. TT1 patients showed a lower IQ and poorer executive functioning, mental health, and social functioning compared to healthy controls and PKU patients. PKU patients did not differ from healthy controls regarding these outcome measures. Relatively poor outcomes for TT1 patients were particularly evident for verbal IQ, BRIEF dimensions “working memory”, “plan and organize” and “monitor”, ASEBA dimensions “social problems” and “attention problems”, and for the SSRS “assertiveness” scale (all p values <0.001). To conclude, TT1 patients showed cognitive impairments on all domains studied, and appeared to be significantly more affected than PKU patients. More attention should be paid to investigating and monitoring neurocognitive outcome in TT1 and research should focus on explaining the underlying pathophysiological mechanism
Mitochondrial abnormalities and low grade inflammation are present in the skeletal muscle of a minority of patients with amyotrophic lateral sclerosis; an observational myopathology study
BACKGROUND
Amyotrophic lateral sclerosis (ALS) is a primary progressive neurodegenerative disease characterised by neuronal loss of lower motor neurons (in the spinal cord and brainstem) and/or upper motor neurons (in the motor cortex) and subsequent denervation atrophy of skeletal muscle.
AIM
A comprehensive examination of muscle pathology from a cohort of clinically confirmed ALS patients, including an investigation of inflammation, complement activation, and deposition of abnormal proteins in order to compare them with findings from an age-matched, control group.
MATERIAL AND METHODS
31 muscle biopsies from clinically confirmed ALS patients and 20 normal controls underwent a comprehensive protocol of histochemical and immunohistochemical stains, including HLA-ABC, C5b-9, p62, and TDP-43.
RESULTS
Neurogenic changes were confirmed in 30/31 ALS cases. In one case, no neurogenic changes could be detected. Muscle fibre necrosis was seen in 5/31 cases and chronic mononuclear inflammatory cell infiltration in 5/31 (2 of them overlapped with those showing muscle necrosis). In four biopsies there was an increase in the proportion of cytochrome oxidase (COX) negative fibres (2-3%). p62 faintly stained cytoplasmic bodies in eight cases and none were immunoreactive to TDP-43.
CONCLUSION
This large series of muscle biopsies from patients with ALS demonstrates neurogenic atrophy is a nearly uniform finding and that mild mitochondrial abnormalities and low-grade inflammation can be seen and do not rule out the diagnosis of ALS. These findings could lend support to the notion that ALS is a complex and heterogeneous disorder
Ovotoxic Effects of Galactose Involve Attenuation of Follicle-Stimulating Hormone Bioactivity and Up-Regulation of Granulosa Cell p53 Expression
Clinical evidence suggests an association between galactosaemia and premature ovarian insufficiency (POI); however, the mechanism still remains unresolved. Experimental galactose toxicity in rats produces an array of ovarian dysfunction including ovarian development with deficient follicular reserve and follicular resistance to gonadotrophins that characterize the basic tenets of human POI. The present investigation explores if galactose toxicity in rats attenuates the bioactivity of gonadotrophins or interferes with their receptor competency, and accelerates the rate of follicular atresia. Pregnant rats were fed isocaloric food-pellets supplemented with or without 35% D-galactose from day-3 of gestation and continuing through weaning of the litters. The 35-day old female litters were autopsied. Serum galactose-binding capacity, galactosyltransferase (GalTase) activity, and bioactivity of FSH and LH together with their receptor competency were assessed. Ovarian follicular atresia was evaluated in situ by TUNEL. The in vitro effects of galactose were studied in isolated whole follicles in respect of generation of reactive oxygen species (ROS) and expression of caspase 3, and in isolated granulosa cells in respect of mitochondrial membrane potential, expression of p53, and apoptosis. The rats prenatally exposed to galactose exhibited significantly decreased serum GalTase activity and greater degree of galactose-incorporation capacity of sera proteins. LH biopotency and LH-FSH receptor competency were comparable between the control and study population, but the latter group showed significantly attenuated FSH bioactivity and increased rate of follicular atresia. In culture, galactose increased follicular generation of ROS and expression of caspase 3. In isolated granulosa cells, galactose disrupted mitochondrial membrane potential, stimulated p53 expression, and induced apoptosis in vitro; however co-treatment with either FSH or estradiol significantly prevented galactose-induced granulosa cell p53 expression. We conclude that the ovotoxic effects of galactose involves attenuation of FSH bioactivity that renders the ovary resistant to gonadotrophins leading to increased granulosa cell expression of p53 and follicular atresia
Language production and working memory in classic galactosemia from a cognitive neuroscience perspective: future research directions.
Most humans are social beings and we express our thoughts and feelings through language. In contrast to the ease with which we speak, the underlying cognitive and neural processes of language production are fairly complex and still little understood. In the hereditary metabolic disease classic galactosemia, failures in
language production processes are among the most reported difficulties. It is unclear, however, what the underlying neural cause of this cognitive problem is.
Modern brain imaging techniques allow us to look into the brain of a thinking patient online - while she or he is performing a task, such as speaking. We can measure indirectly neural activity related to the output side of a process (e.g. articulation). But most importantly, we can look into the planning phase prior to
an overt response, hence tapping into subcomponents of speech planning. These components include verbal memory, intention to speak, and the planning of meaning, syntax, and phonology. This paper briefly introduces cognitive theories on language production and methods used in cognitive neuroscience. It reviews the
possibilities of applying them in experimental paradigms to investigate language production and verbal memory in galactosemia
- …