3 research outputs found
Recommended from our members
Interfacial Enrichment of Lauric Acid Assisted by Long-Chain Fatty Acids, Acidity and Salinity at Sea Spray Aerosol Surfaces.
Surfactant monolayers at sea spray aerosol (SSA) surfaces regulate various atmospheric processes including gas transfer, cloud interactions, and radiative properties. Most experimental studies of SSA employ a simplified surfactant mixture of long-chain fatty acids (LCFAs) as a proxy for the sea surface microlayer or SSA surface. However, medium-chain fatty acids (MCFAs) make up nearly 30% of the FA fraction in nascent SSA. Given that LCFA monolayers are easily disrupted upon the introduction of chemical heterogeneity (such as mixed chain lengths), simple FA proxies are unlikely to represent realistic SSA interfaces. Integrating experimental and computational techniques, we characterize the impact that partially soluble MCFAs have on the properties of atmospherically relevant LCFA mixtures. We explore the extent to which the MCFA lauric acid (LA) is surface stabilized by varying acidity, salinity, and monolayer composition. We also discuss the impacts of pH on LCFA-assisted LA retention, where the presence of LCFAs may shift the surface-adsorption equilibria of laurate─the conjugate base─toward higher surface activities. Molecular dynamic simulations suggest a mechanism for the enhanced surface retention of laurate. We conclude that increased FA heterogeneity at SSA surfaces promotes surface activity of soluble FA species, altering monolayer phase behavior and impacting climate-relevant atmospheric processes
Revealing the Impacts of Chemical Complexity on Submicron Sea Spray Aerosol Morphology
Sea spray aerosol (SSA) ejected through bursting bubbles at the ocean surface are complex mixtures of salts and organic species. Composition affects their ability to form marine clouds which cover nearly three-quarters of the Earth and play a critical role in the climate system. Submicron SSA particles have long lifetimes in the atmosphere and impact the Earths climate, yet their cloud-forming potential is difficult to study at the single-particle level using conventional experimental techniques due to their small size. Here, we use large-scale molecular dynamics (MD) simulations as a computational microscope to provide never-before-seen, dynamical views of 40-nm model aerosol particles and their detailed molecular morphologies. We investigate how increasing chemical complexity impacts the distribution and partitioning of organic material throughout individual particles for a range of organic constituents with varying chemical properties. Our simulations show that organic surfactants commonly found in SSA readily partition between both the surface and interior of the aerosol, indicating that nascent SSA may be more heterogeneous than traditional morphological models suggest. We support our computational observations of heterogeneity at the SSA surface with Brewster angle microscopy on model interfaces. Ultimately, our work establishes large-scale MD simulations as a novel technique for interrogating aerosols at the single-particle level, and shows the morphological mechanisms underlying why submicron SSA readily absorb waterand thus have a higher cloud forming potentialthan would otherwise be predicted for organic-rich aerosols
Recommended from our members
Revealing the Impacts of Chemical Complexity on Submicrometer Sea Spray Aerosol Morphology
Sea spray aerosol (SSA) ejected through bursting bubbles at the ocean surface is a complex mixture of salts and organic species. Submicrometer SSA particles have long atmospheric lifetimes and play a critical role in the climate system. Composition impacts their ability to form marine clouds, yet their cloud-forming potential is difficult to study due to their small size. Here, we use large-scale molecular dynamics (MD) simulations as a "computational microscope" to provide never-before-seen views of 40 nm model aerosol particles and their molecular morphologies. We investigate how increasing chemical complexity impacts the distribution of organic material throughout individual particles for a range of organic constituents with varying chemical properties. Our simulations show that common organic marine surfactants readily partition between both the surface and interior of the aerosol, indicating that nascent SSA may be more heterogeneous than traditional morphological models suggest. We support our computational observations of SSA surface heterogeneity with Brewster angle microscopy on model interfaces. These observations indicate that increased chemical complexity in submicrometer SSA leads to a reduced surface coverage by marine organics, which may facilitate water uptake in the atmosphere. Our work thus establishes large-scale MD simulations as a novel technique for interrogating aerosols at the single-particle level