9,929 research outputs found

    Bayesian modelling of skewness and kurtosis with two-piece scale and shape distributions

    Get PDF
    We formalise and generalise the definition of the family of univariate double two--piece distributions, obtained by using a density--based transformation of unimodal symmetric continuous distributions with a shape parameter. The resulting distributions contain five interpretable parameters that control the mode, as well as the scale and shape in each direction. Four-parameter subfamilies of this class of distributions that capture different types of asymmetry are discussed. We propose interpretable scale and location-invariant benchmark priors and derive conditions for the propriety of the corresponding posterior distribution. The prior structures used allow for meaningful comparisons through Bayes factors within flexible families of distributions. These distributions are applied to data from finance, internet traffic and medicine, comparing them with appropriate competitors

    On the Independence Jeffreys prior for skew--symmetric models with applications

    Get PDF
    We study the Jeffreys prior of the skewness parameter of a general class of scalar skew--symmetric models. It is shown that this prior is symmetric about 0, proper, and with tails O(λ3/2)O(\lambda^{-3/2}) under mild regularity conditions. We also calculate the independence Jeffreys prior for the case with unknown location and scale parameters. Sufficient conditions for the existence of the corresponding posterior distribution are investigated for the case when the sampling model belongs to the family of skew--symmetric scale mixtures of normal distributions. The usefulness of these results is illustrated using the skew--logistic model and two applications with real data

    Computing spectral sequences

    Get PDF
    In this paper, a set of programs enhancing the Kenzo system is presented. Kenzo is a Common Lisp program designed for computing in Algebraic Topology, in particular it allows the user to calculate homology and homotopy groups of complicated spaces. The new programs presented here entirely compute Serre and Eilenberg-Moore spectral sequences, in particular the groups and differential maps for arbitrary r. They also determine when the spectral sequence has converged and describe the filtration of the target homology groups induced by the spectral sequence

    A Simple Approach to Maximum Intractable Likelihood Estimation

    Get PDF
    Approximate Bayesian Computation (ABC) can be viewed as an analytic approximation of an intractable likelihood coupled with an elementary simulation step. Such a view, combined with a suitable instrumental prior distribution permits maximum-likelihood (or maximum-a-posteriori) inference to be conducted, approximately, using essentially the same techniques. An elementary approach to this problem which simply obtains a nonparametric approximation of the likelihood surface which is then used as a smooth proxy for the likelihood in a subsequent maximisation step is developed here and the convergence of this class of algorithms is characterised theoretically. The use of non-sufficient summary statistics in this context is considered. Applying the proposed method to four problems demonstrates good performance. The proposed approach provides an alternative for approximating the maximum likelihood estimator (MLE) in complex scenarios

    Flexible linear mixed models with improper priors for longitudinal and survival data

    Get PDF
    We propose a Bayesian approach using improper priors for hierarchical linear mixed models with flexible random effects and residual error distributions. The error distribution is modelled using scale mixtures of normals, which can capture tails heavier than those of the normal distribution. This generalisation is useful to produce models that are robust to the presence of outliers. The case of asymmetric residual errors is also studied. We present general results for the propriety of the posterior that also cover cases with censored observations, allowing for the use of these models in the contexts of popular longitudinal and survival analyses. We consider the use of copulas with flexible marginals for modelling the dependence between the random effects, but our results cover the use of any random effects distribution. Thus, our paper provides a formal justification for Bayesian inference in a very wide class of models (covering virtually all of the literature) under attractive prior structures that limit the amount of required user elicitation
    corecore