44 research outputs found

    Virtual Frame Technique: Ultrafast Imaging with Any Camera

    Full text link
    Many phenomena of interest in nature and industry occur rapidly and are difficult and cost-prohibitive to visualize properly without specialized cameras. Here we describe in detail the Virtual Frame Technique (VFT), a simple, useful, and accessible form of compressed sensing that increases the frame acquisition rate of any camera by several orders of magnitude by leveraging its dynamic range. VFT is a powerful tool for capturing rapid phenomenon where the dynamics facilitate a transition between two states, and are thus binary. The advantages of VFT are demonstrated by examining such dynamics in five physical processes at unprecedented rates and spatial resolution: fracture of an elastic solid, wetting of a solid surface, rapid fingerprint reading, peeling of adhesive tape, and impact of an elastic hemisphere on a hard surface. We show that the performance of the VFT exceeds that of any commercial high speed camera not only in rate of imaging but also in field of view, achieving a 65MHz frame rate at 4MPx resolution. Finally, we discuss the performance of the VFT with several commercially available conventional and high-speed cameras. In principle, modern cell phones can achieve imaging rates of over a million frames per second using the VFT.Comment: 7 Pages, 4 Figures, 1 Supplementary Vide

    How Material Heterogeneity Creates Rough Fractures

    Full text link
    Fractures are a critical process in how materials wear, weaken, and fail whose unpredictable behavior can have dire consequences. While the behavior of smooth cracks in ideal materials is well understood, it is assumed that for real, heterogeneous systems, fracture propagation is complex, generating rough fracture surfaces that are highly sensitive to specific details of the medium. Here we show how fracture roughness and material heterogeneity are inextricably connected via a simple framework. Studying hydraulic fractures in brittle hydrogels that have been supplemented with microbeads or glycerol to create controlled material heterogeneity, we show that the morphology of the crack surface depends solely on one parameter: the probability to perturb the front above a critical size to produce a step-like instability. This probability scales linearly with the number density, and as heterogeneity size to the 5/25/2 power. The ensuing behavior is universal and is captured by the 1D ballistic propagation and annihilation of steps along the singular fracture front

    A model for the fragmentation kinetics of crumpled thin sheets

    Full text link
    As a confined thin sheet crumples, it spontaneously segments into flat facets delimited by a network of ridges. Despite the apparent disorder of this process, statistical properties of crumpled sheets exhibit striking reproducibility. Experiments have shown that the total crease length accrues logarithmically when repeatedly compacting and unfolding a sheet of paper. Here, we offer insight to this unexpected result by exploring the correspondence between crumpling and fragmentation processes. We identify a physical model for the evolution of facet area and ridge length distributions of crumpled sheets, and propose a mechanism for re-fragmentation driven by geometric frustration. This mechanism establishes a feedback loop in which the facet size distribution informs the subsequent rate of fragmentation under repeated confinement, thereby producing a new size distribution. We then demonstrate the capacity of this model to reproduce the characteristic logarithmic scaling of total crease length, thereby supplying a missing physical basis for the observed phenomenon.Comment: 11 pages, 7 figures (+ Supplemental Materials: 15 pages, 9 figures); introduced a simpler approximation to model, key results unchanged; added references, expanded supplementary information, corrected Fig. 2 and revised Figs. 4 and 7 for clearer presentation of result

    A state variable for crumpled thin sheets

    Full text link
    Despite the apparent ease with which a sheet of paper is crumpled and tossed away, crumpling dynamics are often considered a paradigm of complexity. This complexity arises from the infinite number of configurations a disordered crumpled sheet can take. Here we experimentally show that key aspects of crumpling have a very simple description; the evolution of the damage in crumpling dynamics can largely be described by a single global quantity, the total length of all creases. We follow the evolution of the damage network in repetitively crumpled elastoplastic sheets, and show that the dynamics of this quantity are deterministic, and depend only on the instantaneous state of the crease network and not at all on the crumpling history. We also show that this global quantity captures the crumpling dynamics of a sheet crumpled for the first time. This leads to a remarkable reduction in complexity, allowing a description of a highly disordered system by a single state parameter. Similar strategies may also be useful in analyzing other systems that evolve under geometric and mechanical constraints, from faulting of tectonic plates to the evolution of proteins

    A Sequence of Developmental Events Occurs Underneath Growing Bacillus subtilis Pellicles

    Get PDF
    Biofilms are structured communities of bacteria that exhibit complex spatio-temporal dynamics. In liquid media, Bacillus subtilis produces an opaque floating biofilm, or a pellicle. Biofilms are generally associated with an interface, but the ability of Bacillus subtilis to swim means the bacteria are additionally able to reside within the liquid phase. However, due to imaging complications associated with the opacity of pellicles, the extent to which bacteria coexist within the liquid bulk as well as their behavior in the liquid is not well studied. We therefore develop a high-throughput imaging system to image underneath developing pellicles. Here we report a well-defined sequence of developmental events that occurs underneath a growing pellicle. Comparison with bacteria deficient in swimming and chemotaxis suggest that these properties enable collective bacterial swimming within the liquid phase which facilitate faster surface colonization. Furthermore, comparison to bacteria deficient in exopolymeric substances (EPS) suggest that the lack of a surface pellicle prevents further developmental steps from occurring within the liquid phase. Our results reveal a sequence of developmental events during pellicle growth, encompassing adhesion, conversion, growth, maturity, and detachment on the interface, which are synchronized with the bacteria in the liquid bulk increasing in density until the formation of a mature surface pellicle, after which the density of bacteria in the liquid drops
    corecore