20,874 research outputs found

    Navier-Stokes calculations with a coupled strongly implicit method. Part 2: Spline solutions

    Get PDF
    A coupled strongly implicit method is combined with a deferred-corrector spline solver for the vorticity-stream function form of the Navier-Stokes equation. Solutions for cavity, channel and cylinder flows are obtained with the fourth-order spline 4 procedure. The strongly coupled spline corrector method converges as rapidly as the finite difference calculations and also allows for arbitrary large time increments for the Reynolds numbers considered. In some cases fourth-order smoothing or filtering is required in order to suppress high frequency oscillations

    Improved analytic longitudinal response analysis for axisymmetric launch vehicles. Volume I - Linear analytic model

    Get PDF
    Improved analytic longitudinal response analysis for axisymmetric launch vehicles - linear mode

    High-order numerical solutions using cubic splines

    Get PDF
    The cubic spline collocation procedure for the numerical solution of partial differential equations was reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy for a nonuniform mesh and overall fourth-order accuracy for a uniform mesh. Application of the technique was made to the Burger's equation, to the flow around a linear corner, to the potential flow over a circular cylinder, and to boundary layer problems. The results confirmed the higher-order accuracy of the spline method and suggest that accurate solutions for more practical flow problems can be obtained with relatively coarse nonuniform meshes

    A pressure flux-split technique for computation of inlet flow behavior

    Get PDF
    A method for calculating the flow field in aircraft engine inlets is presented. The phenomena of inlet unstart and restart are investigated. Solutions of the reduced Navier-Stokes (RNS) equations are obtained with a time consistent direct sparse matrix solver that computes the transient flow field both internal and external to the inlet. Time varying shocks and time varying recirculation regions can be efficiently analyzed. The code is quite general and is suitable for the computation of flow for a wide variety of geometries and over a wide range of Mach and Reynolds numbers

    Solution of three-dimensional afterbody flow using reduced Navier-Stokes equations

    Get PDF
    The flow over afterbody geometries was investigated using the reduced Navier-Stokes (RNS) approximation. Both pressure velocity flux-split and composites velocity primitive variable formulations were considered. Pressure or pseudopotential relaxation procedures are combined with sparse matrix or coupled strongly implicit algorithms to form a three-dimensional solver for general non-orthogonal coordinates. Three-dimensional subsonic and transonic viscous/inviscid interacting flows were evaluated. Solutions with and without regions of recirculation were obtained

    Stationary Points of Scalar Fields Coupled to Gravity

    Get PDF
    We investigate the dynamics of gravity coupled to a scalar field using a non-canonical form of the kinetic term. It is shown that its singular point represents an attractor for classical solutions and the stationary value of the field may occur distant from the minimum of the potential. In this paper properties of universes with such stationary states are considered. We reveal that such state can be responsible for modern dark energy density.Comment: H. Kroger, invited talk, FFP6, Udine (2004), revised version with corrected author lis

    Open Questions in Classical Gravity

    Full text link
    We discuss some outstanding open questions regarding the validity and uniqueness of the standard second order Newton-Einstein classical gravitational theory. On the observational side we discuss the degree to which the realm of validity of Newton's Law of Gravity can actually be extended to distances much larger than the solar system distance scales on which the law was originally established. On the theoretical side we identify some commonly accepted but actually still open to question assumptions which go into the formulating of the standard second order Einstein theory in the first place. In particular, we show that while the familiar second order Poisson gravitational equation (and accordingly its second order covariant Einstein generalization) may be sufficient to yield Newton's Law of Gravity they are not in fact necessary. The standard theory thus still awaits the identification of some principle which would then make it necessary too. We show that current observational information does not exclusively mandate the standard theory, and that the conformal invariant fourth order theory of gravity considered recently by Mannheim and Kazanas is also able to meet the constraints of data, and in fact to do so without the need for any so far unobserved non-luminous or dark matter.Comment: UCONN-93-1, plain TeX format, 22 pages (plus 7 figures - send requests to [email protected]). To appear in a special issue of Foundations of Physics honoring Professor Fritz Rohrlich on the occasion of his retirement, L. P. Horwitz and A. van der Merwe Editors, Plenum Publishing Company, N.Y., Fall 199

    Gravitational Wave Bursts from Collisions of Primordial Black Holes in Clusters

    Full text link
    The rate of gravitational wave bursts from the mergers of massive primordial black holes in clusters is calculated. Such clusters of black holes can be formed through phase transitions in the early Universe. The central black holes in clusters can serve as the seeds of supermassive black holes in galactic nuclei. The expected burst detection rate by the LISA gravitational wave detector is estimated.Comment: 10 pages, 2 figure

    ALLY: An operator's associate for satellite ground control systems

    Get PDF
    The key characteristics of an intelligent advisory system is explored. A central feature is that human-machine cooperation should be based on a metaphor of human-to-human cooperation. ALLY, a computer-based operator's associate which is based on a preliminary theory of human-to-human cooperation, is discussed. ALLY assists the operator in carrying out the supervisory control functions for a simulated NASA ground control system. Experimental evaluation of ALLY indicates that operators using ALLY performed at least as well as they did when using a human associate and in some cases even better
    corecore