88 research outputs found

    The dependence of metal-silicate partitioning of moderately volatile elements on oxygen fugacity and Si contents of Fe metal: Implications for their valence states in silicate liquids

    Get PDF
    The volatile siderophile elements are important tracers of the delivery of volatile elements to the Earth. Their concentrations in the bulk silicate Earth are a function of the relative timing of their accretion and their sequestration into the core: a comprehensive understanding of their metal-silicate partitioning behaviour is therefore required in order to infer the volatile element accretion history. We present new partitioning data between liquid metal and liquid silicate at 11 GPa for a suite of volatile siderophile elements: Ag, As, Au, Cu, Ge, P, Pb, Sb, Sn. We focus particularly on determining their valence states and the effects of Si on partitioning, which are required in order to extrapolate from experimental conditions to core-formation conditions. It was found that all elements have weak to strong positive interaction parameters with Si. At low fO2, redox equilibria dictate that the siderophile elements should become more siderophile. However, at low fO2, Si also partitions more strongly into the metal. Given the repulsive nature of the interaction between Si and the elements of interest, the increased Si concentration at low fO2 will counteract the expected increase in the partition coefficient, making these elements less siderophile than expected at very reducing conditions. This causes the linear relationship between fO2 and log(D) to become non-linear at low fO2, which we account for by fitting an interaction parameter between Si and the elements of interest. This has implications for the interpretation of experimental results, because the valence cannot be determined from the slope of log(D) vs. logfO2 if low fO2, high Si metal compositions are employed without applying an activity correction. This also has implications for the extrapolation of experimental partitioning data to core-formation conditions: reducing conditions in the early stages of core formation do not necessarily result in complete or even strong depletion of siderophile elements when Si is present as a light element in the core-forming metal phase

    Transformation textures in post-perovskite: Understanding mantle flow in the D '' layer of the Earth

    Get PDF
    Deformation and texture formation in (Mg, Fe)SiO3 post perovskite (ppv) is a potential explanation for the strong seismic anisotropy that is found in the D '' layer of the Earth. However, different experimental approaches have resulted in different lattice preferred orientations (LPO) in deformed ppv that have led to ambiguity in the interpretation of deformation in the lowermost mantle. Here, we show that deformation of the analogue substance CaIrO3 during a phase transformation from perovskite to ppv leads to a transformation texture that differs from the CaIrO3 ppv deformation texture but resembles the results from ppv deformation experiments in diamond anvil cells. Assuming material spreading parallel to the core-mantle boundary, our results predict a widespread shear wave splitting with fast horizontal S-waves, which is compatible with seismic studies. Downwelling material that undergoes a phase transformation may develop a transformation texture that would locally result in vertically polarized fast S-waves. Citation: Walte, N. P., F. Heidelbach, N. Miyajima, D. J. Frost, D. C. Rubie, and D. P. Dobson (2009), Transformation textures in post-perovskite: Understanding mantle flow in the D '' layer of the Earth, Geophys. Res. Lett., 36, L04302, doi: 10.1029/2008GL036840

    Metal–silicate partitioning of W and Mo and the role of carbon in controlling their abundances in the bulk silicate earth

    Get PDF
    The liquid metal–liquid silicate partitioning of molybdenum and tungsten during core formation must be well-constrained in order to understand the evolution of Earth and other planetary bodies, in particular because the Hf–W isotopic system is used to date early planetary evolution. The partition coefficients DMo and DW have been suggested to depend on pressure, temperature, silicate and metal compositions, although previous studies have produced varying and inconsistent models. Additionally, the high cationic charges of W and Mo in silicate melts make their partition coefficients particularly sensitive to oxygen fugacity. We combine 48 new high pressure and temperature experimental results with a comprehensive database of previous experiments to re-examine the systematics of Mo and W partitioning, and produce revised partitioning models from the large combined dataset. W partitioning is particularly sensitive to silicate and metallic melt compositions and becomes more siderophile with increasing temperature. We show that W has a 6+ oxidation state in silicate melts over the full experimental fO2 range of ΔIW −1.5 to −3.5. Mo has a 4+ oxidation state, and its partitioning is less sensitive to silicate melt composition but also depends on metallic melt composition. DMo stays approximately constant with increasing depth in Earth. Both W and Mo become more siderophile with increasing C content of the metal: we therefore performed experiments with varying C concentrations and fit epsilon interaction parameters:  = −7.03 ± 0.30 and  = −7.38 ± 0.57. W and Mo along with C are incorporated into a combined N-body accretion and core–mantle differentiation model, which already includes the major rock-forming elements as well as S, and moderately and highly siderophile elements. In this model, oxidation and volatility gradients extend through the protoplanetary disk so that Earth accretes heterogeneously. These gradients, as well as the metal–silicate equilibration pressure, are fitted using a least squares optimisation so that the model Earth-like planet reproduces the composition of the bulk silicate Earth (BSE) in terms of 17 simulated element concentrations (Mg, Fe, Si, Ni, Co, Nb, Ta, V, Cr, S, Pt, Pd, Ru, Ir, W, Mo, and C). The effects of the interaction of W and Mo with Si, S, O, and C in metal are included. Using this model with six separate terrestrial planet accretion simulations, we show that W and Mo require the early accreting Earth to be sulfur-depleted and carbon-enriched so that W and Mo are efficiently partitioned into Earth’s core and do not accumulate in the mantle. When this is the case, the produced Earth-like planets possess mantle compositions matching the BSE for all simulated elements. However, there are two distinct groups of estimates of the bulk mantle’s C abundance in the literature: low (∼100 ppm) and high (∼800 ppm), and all six models are consistent with the higher estimated carbon abundance. The low BSE C abundance would be achievable when the effects of the segregation of dispersed metal droplets produced in deep magma oceans by the disproportionation of Fe2+ to Fe3+ plus metallic Fe is included

    Carbon-depleted outer core revealed by sound velocity measurements of liquid iron-carbon alloy

    Get PDF
    The relative abundance of light elements in the Earth's core has long been controversial. Recently, the presence of carbon in the core has been emphasized, because the density and sound velocities of the inner core may be consistent with solid Fe(7)C(3). Here we report the longitudinal wave velocity of liquid Fe(84)C(16) up to 70 GPa based on inelastic X-ray scattering measurements. We find the velocity to be substantially slower than that of solid iron and Fe(3)C and to be faster than that of liquid iron. The thermodynamic equation of state for liquid Fe(84)C(16) is also obtained from the velocity data combined with previous density measurements at 1 bar. The longitudinal velocity of the outer core, about 4% faster than that of liquid iron, is consistent with the presence of 4–5 at.% carbon. However, that amount of carbon is too small to account for the outer core density deficit, suggesting that carbon cannot be a predominant light element in the core

    The effect of alumina on phase transformations at the 660-kilometer discontinuity from Fe-Mg partitioning experiments

    No full text
    Experimental data on the partitioning of Fe and Mg between coexisting silicate perovskite, magnesiowustite, and γ-(Mg,Fe)2SiO4 demonstrate that Fe substitution in perovskite is strongly coupled to Al2O3 concentration. In Al2O3-free compositions, perovskite has a low Fe/(Fe+Mg) ratio: for a bulk Fe/(Fe+Mg) of 0.11, perovskite has a value close to 0.04, whereas magnesiowustite has a ratio near 0.17. In peridotitic mantle, however, where the perovskite should contain 4 to 5 weight percent Al2O3, it has essentially the same Fe/(Fe+Mg) ratio as coexisting magnesiowustite. Under lower mantle conditions, therefore, perovskite and magnesiowustite should, in peridotite, each have an Fe/(Fe+Mg) ratio close to 0.11
    corecore